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Foreword

HE tremendous research and development effort that went into the

development of radar and related techniques during World War II
resulted not only in hundreds of radar sets for military (and some for
possible peacetime) use but also in a great body of information and new
techniques in the electronics and high-frequency fields. Because this
basic material may be of great value to science and engineering, it seemed
most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the super-
vision of the National Defense Research Committee, undertook the great
task of preparing these volumes. The work described herein, however, is
the collective result of work done at many laboratories, Army, Navy,
university, and industrial, both in this country and in England, Canada,
and other Dominions.

The Radiation Laboratory, once its proposals were approved and
finances provided by the Office of Scientific Research and Development,
chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire
project. An editorial staff was then selected of those best qualified for
this type of task. Finally the authors for the various volumes or chapters
or sections were chosen from among those experts who were intimately
familiar with the various fields, and who were able and willing to write
the summaries of them. This entire staff agreed to remain at work at
MIT for six montns or more after the work of the Radiation Laboratory
was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and
thousands of other scientists, engineers, and others who actually carried
on the research, development, and engineering work the results of which
are herein described. There were so many involved in this work and they
worked so closely together even though often in widely separated labora-
tories that it is impossible to name or even to know those who contributed
to a particular idea or development. Only certain ones who wrote repor::
or articles have even been mentioned. But to all those who contributed
in any way to this great cooperative development enterprise, both in this
country and in England, these volumes are dedicated.

L. A. DuBRIDGE.
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Preface

HE pulsed 10-cm magnetron, perfected by the British in 1940, consti-

tuted the starting point for the development of microwave radar.
From that time until the end of the war the magnetron proved to be one
of the most important components in radar systems. As a consequence
of this, the armed services, both in this country and in England, insti-
gated extensive programs of research and development to produce new
types and improve the characteristics of existing ones. The program
soon became a major one for the electronic industry. At the Radiation
Laboratory alone, over forty highly trained physicists and engineers spent
more than four years studying magnetron performance and producing
new designs. Comparable effort was expended by the many other
industrial and research laboratories. The result was over twenty dis-
tinct types of magnetrons, producing powers in the tens to thousands of
kilowatts at frequencies that were largely unexplored before 1940. What
is more important, this program led to a better understanding of the
principles of magnetron operation and to an increased appreciation of
the importance of the field of electronics at high frequencies.

During the war very little attention could be given to evaluating,
correlating, and recording these new developments, and what reports
were written are disconnected and incomplete. Actually, much of the
information existed only in the minds of the investigators and in their
personal notebooks. The purpose of this book is to present in a usable
form this large amount of theoretical and practical knowledge.

Conditions surrounding the preparation of the volume produced
special problems. The time available was short, considering the amount
and complexity of the material, and a division of labor among many
authors was necessary. This permitted the selection of authors best
qualified to present different subjects but resulted in a not too consistent
style and level of presentation. Furthermore, it was appreciated that
although microwave magnetrons were developed for use in radar systems,
their importance to science and engineering was much broader; thus the
material for the book was evaluated largely in terms of its possible future
usefulness, and the uncertainty of this resulted in a tendency to include

IX




X PREFACE

too much rather than too little. More serious are the errors that may
not have been eliminated because of insufficient time for adequate review.

The book contains a large fraction of what was known, as of January
1946, about the theory, design, and operation of magnetrons in the
frequency range 1000 to 25,000 Mc/sec and the many modifications that
extend the usefulness of these tubes. There is in this book, because of
its radar background, a strong emphasis on magnetrons intended for
pulsed operation, but the treatment is extended to c-w applications
whenever possible.

The scope is dictated by the primary premise that all information
necessary to ““make a magnetron” be included. As a result, the character
of the chapters ranges from a detailed theory of the various aspects of
magnetron operation to the details of construction of production magne-
trons. An introductory chapter reviews the early work on magnetrons,
including the first 10-cm tube of the British, and presents the basic
principles of magnetron operation in order to orient the reader unfamiliar
with the subject.

Except for this introduction, the material is arranged so that theory
precedes practical considerations. A final chapter gives operating data
and important dimensions for a variety of magnetrons.

Although the authors of this volume were nearly all members of the
MIT Radiation Laboratory or Columbia Radiation Laboratory, a great
deal of the material included originated in the industrial concerns of this
country and England. References to contributions by other laboratories
is given whenever possible, but the free exchange of information existing
during the war makes the origins of many of the ideas uncertain. In
particular, the contributions of the Bell Telephone Laboratories and the
Raytheon Manufacturing Company have been extensive and in many
cases undistinguishable from those of the MIT and Columbia groups.
The important contributions of these and the many other institutions are
acknowledged.

The early work of the British deserves special recognition. All too
few references to it are found in this volume, because soon after the
original design was divulged to laboratories in this country, the develop-
ment here proceeded along rather independent lines. The British magne-
tron, however, was the key to the production of high-power microwaves.
A discussion of this tube and its important features is found in Chap. 1,
based on material kindly furnished by Professor J. T. Randall and
Dr. H. A. H. Boot who, more than any others, were responsible for its
invention.

Acknowledgments are due to the many who reviewed chapters of the
book. In particular, mention should be made of Dr. Lewi Tonks of the
General Electric Company, Drs. W. B. Hebenstriet and H, D. Hagstrum
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of the Bell Telephone Laboratories, Drs. A. Nordsieck and A. V. Hollen-
berg of Columbia University, Dr. Lloyd P. Smith of Cornell University,
and Miss Helen Wieman for her assistance in preparing the manuseript
for publication.

In conclusion, the editor wishes to emphasize that a book of this
magnitude could not have been written without the wholehearted
cooperation of all the authors, many of whom worked on the manuscript
long after leaving the Radiation Laboratory.

GrorgE B. Cornins.
CAMBRIDGE, Mass.,,
July, 1946,
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CHAPTER 1
INTRODUCTION

Georce B. CoLLiNs

A magnetron is a diode, usually cylindrical, with a magnetic field
parallel to its axis. In modern usage, however, the word implies a diode
that, with the aid of a magnetic field, produces short electromagnetic
waves, and it is with this meaning that the term is used in this volume.
Those magnetrons which produce radiation within the wavelength range
1 to 30 cm are here defined as microwave magnetrons. This class of
tubes is sometimes called cavity magnetrons from the fact that, in the
usual design, the resonant circuit is a number of closely coupled cavities
contained within the evacuated portion of the tube.

1.1. Early Types of Magnetrons.—Microwave magnetrons and the
theory of their operation have their origin in contributions made by a
great many investigators extending back at least to 1921. A review of
this development will be given here with the purpose of pointing out the
significant steps that have led to the present highly efficient sources of
microwaves. Editorial policy precludes the assignment of eredit for
origination of ideas or inventions, and this question will be purposely
avoided as far as possible.

Nonoscillating Diodes with Magnetic Fields.—The basis for much of
the theory of magnetron operation was laid by Hull! who investigated
the behavior of electrons in a cylindrical diode in the presence of a mag-
netic field parallel to its axis. Such a diode is shown in Fig. 1-1a. A
cylindrical anode surrounds a centrally placed cathode which is heated
to provide a source of electrons. A nearly uniform magnetic field parallel
to the axis of the tube is produced by a solenoid or external magnet not
shown in the diagram. In the crossed electric and magnetic fields which
exist between the cathode and anode an electron that is emitted by
the cathode moves under the influence of a force F, = Ee and a force

F. = e/c(v X B) (see Fig. 1-2), where E is the electric field, B the
magnetic field, ¢ the velocity of light, v the velocity of the electron, and
e is its charge. The solution of the resulting equations of motion, which
neglect space-charge effects, shows that the path of the electron is a
quasi-cycloidal orbit with a frequency given approximately by
eB
Jo= = 1

v A. W. Hull, Phys. Rev., 18, 31 (1921).
1



2 INTRODUCTION [Sec. 1-1

Fig. 1-1—Early types of magnetrons: (a) Hull original diode; (b) split anode; (¢) split
anode with internal resonator; (d) improved split anode; (¢) four-segment anode.
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When this orbit touches the anode, a condition of cutoff is said to
exist, and Eq. (2) holds
272
b7
where V is the potential difference between the anode and the cathode
and r, and r. are their radii. The relation
is an important one from the standpoint
of magnetron operation. It implies that
for V/B? less than the right side of Eq.
(2), no current flows and, as V/B? is
increased through the cutoff condition, a
rapid increase in current takes place. For
obscure reasons the reduction of current at
cutoff, which is observed experimentally, is
not so abrupt as the theory outlined above
would indicate.

Cyclotron Frequency Oscillations.—The elecf::,’, m‘;ﬁ;;ﬁ?,’ﬁ";iogg‘ with
type of diode shown in Fig. I-1a can be made 2 magnetic field parallel to its
to oscillate at very high frequencies if the ***
cathode and anode are made part of a resonant circuit with reasonably
high impedance and low losses. Conditions for oscillation are that V/B?
must be adjusted close to the cutoff condition given by Eq. (2) and that
the frequency of the resonant current be close to the transit frequency of

+_  the electrons. An explanation of these

To oscillations is given in terms of Fig. 1-3.

’egfé‘:i't‘t The dashed circle represents the path of

" an electron in the interaction space and

modifies the trajectories of such an elec-

=~ tron. Curve (1) represents the trajec-

tory of an ele¢tron emitted at an instant

when the r-f field is in the same direc-

tion as the d-c field. Thus the effective

V acting on the electron is increased,

- _ and from Eq. (2) it is seen that this

o iﬁs:?n—t—}::ﬁ::ﬂfi}?: il‘;"ég’c’i‘fs increases the cutoff radius with the

unfavorable for the support of oscil- Tresult that the electron strikes the
lations; (2) favorable. anode.

Curve (2) is for an electron emitted one-half period later when the
r-f fields are opposed to the d-c field. The electron now misses the anode
and returns toward the cathode. Since the frequency of rotation as
given by (1) is made close to the r-f frequency, electron (1) will return
toward the cathode also retarded by the r-f field. This electron thus
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contributes energy to the r-f oscillation, and the process will continue as
long as the phase relationships with the r-{ field persist or until the
electron is removed by some process. As these phase relationships
cannot be maintained indefinitely, provisions are usually made for remov-
ing the electrons before they fall out of phase. One method is to tilt
the magnetic field slightly with respect to the axis of the tube. This
causes the electrons to spiral out of the end of the anode before too many
revolutions occur.

A characteristic of this type of magnetron, which is important to
the operation of many magnetrons, is the quick removal from the r-f
field of the electrons whose phase is unfavorable to the support of oscilla-
tions and the retention in the r-f field of the favorable ones.

Split-anode magnetrons such as shown in Fig. 1-1b will also oscillate
when the frequency of the resonant circuit (now connected to the two
segments) is close to the transit frequency of the electrons and the anode
voltage adjusted close to cutoff conditions. No satisfactory analysis
has heen made that gives the trajectory of the electrons in this case, but
it is probable that the unfavorable and favorable electrons are segregated
by processes similar to that illustrated in Fig. 1-3.

No large number of cyclotron-type magnetrons have been made,
but they have been used effectively as experimental sources of radio
frequency.?23 At 50-cm wavelength output powers of 100 watts have
been obtained; at 10-cm wavelength about 1 watt; and detectable
radiation has been produced at 0.6 cm. The efficiency of the split-
anode tubes is around 10 per cent for moderately long wavelengths as
compared with 1 per cent for the diode variety. )

The shortcomings of this class of magnetron are low efficiency, low
power, and generally erratic behavior, but extremely high frequencies
can be generated by these oscillators.

Negative Resistance or Habann Type.—If the magnetic field of a split-
anode magnetron is greatly increased over what is required for the
cyclotron-type oscillations, a new type can ocecur which has been called
negative-resistance or Habann-type oscillations. The {requency 1is
determined almost wholly by the resonant circuit, and the magnetic
field is not critical as is the case with cyclotron oscillations. These
oscillators have been investigated by Kilgore* who observed in a mag-
netron containing gas at low pressure, luminous paths corresponding to
electron trajectories of the form shown in Fig. 1-4.

The form of the r-f field is shown, and this combined with the d-¢

1 A. Zarek, Cos. Pro. Pest Math. a Frys., Prague, 53, 578 (1924).
2 H. Yagi, Proc. IRE, 16, 715 (1928).

2 C. E, Cleeton and N. H, Williams, Phys. Rer., 50, 1091 (1936).
4+ G. R. Kilgore, Proc. IRE, 24, 1140 (1936).
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field and the high magnetic field causes the electrons to spiral out to
the anode segment that is at the lowest (most negative) potential.
The magnetron thus has the characteristics of a negative resistance neces-
sary to produce oscillations. It is observed that the efficiency of this
type of oscillation is enhanced if the electron moves out to the anode
making ten or more spirals. The frequency of the spiraling is determined
by Eq. (1), and thus magnetic field strengths are needed that are ten
times those required to produce the same frequency by cyclotron-type
oscillations. Providing sufficiently high magnetic fields to satisfy this
requirement for very high frequencies is one of the principal ob]ectlons
to this type of oscillation as a practi-

cal source of microwaves. +1§0

An important modification in To
the design of split-anode magne- resonant

trons was made when the resonant
circuit was placed entirely within
the vacuum system. This step
was the result of efforts to increase
both the frequency and power out-
put. Figure 1-l¢c shows such a
design. This type of tube has pro-
duced power outputs of 100 to 400
watts at 50 cm and 80 watts at 20
cm.

Traveling-wave Oscillations.— +50  Flectron path
This third type of oscillation also Fie. 1-4—Trajectories of an electron in
occurs in split-anode magnetrons ‘;}S{)’lit"““"de magnetron when used as a

i abann-type oscillator.

and is related to the negative resist-

ance type. The two differ only in the ratio of the angular frequency of the
traveling wave to the cyclotron frequency. In the negative-resistance
magnetron the magnetic field is so high that on the cyclotron time scale
the traveling wave remains nearly stationary. There is no sharp dividing
line between the two. For the same frequencies the magnetic field
required is much lower than that needed to produce negative-resistance
oscillations; and although the magnetic field may be close to the value
necessary to produce cyclotron-type oscillation, its value is not critical
and the anode potential is lower, so that oscillations occur below cutoff
conditions.

Traveling-wave oscillations have also been observed! in four-segment
and even eight-segment magnetrons. Figure 1-1d illustrates a four-
segment magnetron and shows in particular the manner in which the
alternate segments are connected together within the vacuum envelope.

1 K. Posthumus, Wireless Eng., 12, 126 (1935).
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A particularly important feature of this design is that for a given B and
7, the four-segment magnetron can be made to oscillate at twice the
frequency of a two-segment one. Posthumus'! developed a theory for
oscillation of this type, which although space-charge effects are neglected,
gives a reasonable explanation of the observed characteristics. This
explanation can be made conveniently in terms of the four-segment tube.
Figure 1-5 shows in an approximate manner the electric field distribution.
These fields vary with time in a sinusoidal manner and may be considered
as standing waves resulting from two sets of traveling waves rotating in
opposite directions around the anode. For oscillations to occur the:
angular velocity of the electrons
To must approximate that of one of the
resonant  yotating waves so that the electrons
circuit R R

retain for an appreciable length of
time their phase relationship with
the r-f field. Posthumus showed
that this condition exists when

4mnV,
f"' TﬁB 4 (3)

when f is the frequency, V, and r,
the anode potential and radius, B

the magnetic field, and » the number
Fi1g. 1.5.—Electric fields in a four-segment  of pairs of segments.
magnetron.

The theory also shows that elec-
trons which are retarded by the r-f field and thus contribute energy to it
spiral outward and eventually strike the anode.

Equation (3) is consistent with the characteristics of these oscillations
as observed by Posthumus. The upper-frequency limit for a given tube
is inversely proportional to B, and for n = 2 this limiting frequency is
twice that for n = 1. The theory is also consistent with such facts,
now well known, that the anode voltage is proportional to the square
of r, and that for oscillations to occur the ratio V /B must remain constant.

Of the three types of oscillations—cyclotron frequency, negative
resistance, and traveling wave—the last has proved the most effective
in magnetrons that are used as practical sources of microwaves. Some
advantages of the traveling-wave type of oscillations are good efficiencies
at high frequencies, moderate magnetic field requirements, and stability
of operation over a wide range of input and output conditions.

For frequencies below 1000 Mc/sec it is convenient to have the reso-
nant circuit external to the vacuum system, as the elements are rather
bulky and because external circuits can be tuned more readily. This

1 Ibid.
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circumstance has led to the development of split-anode magnetrons in
the 100 to 1000 Mc/sec region that has culminated in the design shown
in Fig. 1-1d. An important feature of these tubes is the large-diameter
conductors connecting the two sections of the anode to the external
circuit. This reduces losses in the resonant circuit and increases the
anode dissipation. Power outputs of 150 watts at frequencies between
15 and 1200 Mc/sec can be obtained reliably from this tube and similar
ones.!

A

F1a. 1-6.—Early form of internal resonator magnetron.

In a search for magnetron sources of higher frequencies and higher
powers certain modifications are suggested by the performance of the
designs shown in Fig. 1-1. In particular the combination of the internal
resonant circuit Fig. 1-1c with the multisegment feature of Fig. 1-le
seems desirable, as the internal resonant circuit is capable of handling
high powers at high frequencies and the multisegment structure reduces
the anode voltage and magnetic field. Figure 1-6 shows an arrangement
of internal circuits that was investigated by Aleksereff and Malearoff.?

! This line of magnetron was developed by the General Electric Co.

* N. T. Aleksereff and . K. Malearoff, Jour. Tech. Phys. USSR, 10, 1297 (1940).
Republished Proc. IRE, 82, 136 (1944).



8 INTRODUCTION [SEc. 1-2

Similar arrangements have been suggested by many others.'?® Here
the resonator system is made up of a number of internal resonators
arranged around the axis of the cathode so that the capacitive portion
of each resonator opens out into the cathode-anode space. The mag-
netron shown in Fig. 1-6 was tried with anode blocks having up to
eight resonators and with various anode sizes. Powers of a few hundred
watts at 9-cm wavelength are reported with efficiencies as high as 20
per cent, and a few watts were produced at 2.5-cm at very low efficiency.
The power output was limited by overheating of the cathode which
— ) e ... Dpresumably resulted from back
bombardment by electrons that
received energy from the r-f field.

1-2. The British Cavity Mag-
netron.—The wartime need of
radar for a transmitting tube capa-
ble of very high pulsed-power out-
puts at wavelengths of 10 em or
less led British investigators? to
attempt late in 1939 the develop-
ment of a magnetron with these
characteristics. They invented
and perfected a traveling-wave
type magnetron with internal
resonators that when pulsed pro-
duced microwave radiation with
peak powers several orders of mag-
nitude greater than had been obtained before by any means. The fact
that this magnetron was operated under pulsed input conditions is par-
ticularly significant. Duty ratios [(pulse duration)/(interval between
pulses) + (pulse duration)] of about 0.001 were used so that heating of the
cathode and anode was greatly reduced over that for c-w operation.
Specifically, with a duty ratio of 0.001, pulse powers one thousand times
the maximum c-w inputs are possible without producing overheating.
After a comparatively short period of development 10-cm magnetrons
were made that operated efficiently with peak power inputs of several
hundred kilowatts and outputs in excess of 100 kw. Figure 1-7 shows the

1 A. L. Samuel, U.S. Patent 2063341, 1936.

2 British Patent 509104, Oct. 7, 1938.

3 Reichspatent 663259, Aug. 3, 1938.

¢ Professor J. T. Randal and Dr. H. A. H. Boot, University of Birmingham,
Birmingham, England. The work of these investigators was greatly aided as a result
of cooperation with The General Electric Company, Ltd., Wembley, England, which
made many contributions essential to the success of the production version of these
early magnetrons.

[

I'16. 1-7.—Anode block of first British 10-cm
magnetron.
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first anode constructed by these investigators, and Fig. 1-8 the first ex-
perimental magnetron. This tube had an output of 400 watts c-w at a
wavelength of 9.8 cm. Figure 1-9 shows the construction of this mag-
netron as it was produced for use in microwave radars.

Fic. 1-8.—First British 10-cm magnetron.
The effectiveness of this magnetron is due especially to three impor-

tant features of design:

1. A large-diameter oxide-coated cathode was used. The large
diameter contributes appreciably to stable operation and provides
a large emitting area.
Under pulsed conditions the
oxide coating was found to
provide peak emission cur-
rents of 10 to 20 amp/cm?
This surprising performance

A_ e
of oxide coatings—the pulse ' T \ﬁi\\ ‘
emission is ten times the d-¢ . .
value—is large]y responsib]e Fic. 1-9—Production version of British
for the magnetron’s ability 10-em magnetron.

to accept high pulse-power inputs. Instabilities such as sparking
naight have been expected, as the magnetron operated with a plate

£
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voltage of 10 kv, a figure considerably above the value considered
safe for the use of oxide cathodes under normal conditions. Fortu-
nately under pulsed conditions little trouble was experienced.

2. The anode block is part of the vacuum envelope. All the mag-
netrons shown in Figs. 1-1 and 1-6 have anode blocks suspended
inside vacuum, and large anode dissipation is difficult to obtain;
with the anode block a part of the vacuum envelope, a low-
impedance thermal path from interior to exterior exists, and heat
dissipation of several hundred watts of average power can be
accomplished with air cooling alone. ’

3. The separate resonators are coupled by conducting elements or
straps.! Without these the magnetron’s several resonant fre-
quencies are so close together that unstable operation results.
With straps the efficiency is raised and stable operation may be
obtained over a wide range of powers.

Other features and certain optimum dimensions, which in all con-
tribute significantly to the operation of this magnetron, were incorporated
as a result of experiment. Good examples of such features are the output
construction and the critical cathode diameter and coupling loop size.

This early work also contributed greatly to the understanding of
magnetron operation. The role of the electrons that return to the
cathode in producing secondaries from the cathode was appreciated,
and, in fact, magnetrons with secondary emitting cathodes and no pri-
mary emission were operated by Boot and Randall. In addition, a very
useful technique for investigating the resonant modes of magnetrons by
the use of signal generators (Chap. 18) was developed.

In spite of the spectacular performance of this early pulsed microwave
magnetron its characteristics were not entirely satisfactory. Its per-
formance was erratic, with regard both to the operation of individual
tubes under varying conditions and to the operation of different but
presumably identical tubes under the same conditions. In addition,
any modification of the original design almost invariably resulted in
unsatisfactory performance. For example, attempts at designing tubes
to operate at wavelengths shorter than 10 em or at lower anode voltages
were not at first successful. The cause of most of these difficulties was
the lack of a complete understanding of the principles of operation of the
magnetron.

1.3. Description of a Microwave Magnetron.—The class of magnetron
with which this book is concerned is distinguished by a resonant system

! The addition of straps to the resonant system of the magnetron was made
by J. Sayers, of Birmingham University, about a year after the original magnetron
was perfected.
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within the tube envelope; this system is composed of a number of coupled
resonators surrounding a relatively large cylindrical cathode. An
example that will be used as a basis for discussion is shown in Figs.
1-10 and 1-11.

These magnetrons are self-excited oscillators, the purpose of which ig
to convert the d-c input power into r-f output power. This conversion
takes place in the interaction space I which is between the cylindrical
cathode C and the anode block A. A constant and nearly uniform magnetic
field is maintained in this interaction space in a direction parallel to the
axis of the tube. In operation, the cathode is maintained at a negative
potential, while the anode block is usually at ground potential. The

f
|
-
F16. 1-10.—Cutaway of typical microwave magnetron showing construction.

anode block is pierced in a direction parallel to the axis by a number of
resonators R which open into the interaction space so that the anode
surface consists of alternate segments and gaps. The ends of the
resonating cavities open into chambers that are called “end spaces’
through which the lines of flux extending from one resonator to the next
pass. The coupling between the resonators is increased by conduct-
ing bars called straps S which connect alternate segments. Power is
extracted from one resonator, one method being a coupling loop L which
forms a part of the output circuit. The combination of resonant cavities,
end spaces, straps, and output circuit is called the resonant system.

In this design, the cathode C is oxide-coated and heated indirectly by
an internal heating coil of tungsten or molybdenum. It is attached
mechanically to two cathode stems supported by glass to provide anode-
to-cathode insulation. Coaxial line chokes K are frequently placed on
these stems to prevent the escape of any stray radiation that may be
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picked up by the cathode structure. At each end of the cathode there
is an end shield H whose purpose is to prevent electrons from leaving
the cathode structure in a direction parallel to the axis of the magnetron.
These end shields must be kept at a temperature too low to cause the
emission of electrons.
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F1a. 1-11.—Cross-sectional views of typical magnetron shown in Fig. 1-10.
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The radial dimensions of the interaction space depend upon the wave-
length and voltage at which the magnetron is to operate and for any given
type are proportional to the wavelength and to the square root of the anode
voltage. For efficient operation, the ratio of cathode diameter to anode
diameter must remain within narrow limits set by the number of resona-
tors. In a 12-resonator magnetron, this ratio is about ¥ the anode;
for fewer oscillators, it is somewhat smaller, and for more than 12 oscil-
lators, somewhat larger.

A magnetic field parallel to the axis of the cathode is required; it is
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often produced by an electromagnet or permanent magnet with pole
faces external to the magnetron. Figure 1-12¢ shows a typical permanent
magnet and magnetron with radial cathode supports. Another type of
magnetron construction, favored for the higher-frequency magnetrons
where magnet weight is of importance, is shown in Fig. 1-12b. This
magnetron-magnet combination is frequently called a ‘packaged
magnetron.” The cathode is usually supported axially through iron

e
et

H

e i et et Sttt 70 0 o5 i st
Fm: i:12.;Two types of magnetroﬁ construction: (a)‘ f;dial cathode supports with separate
magnet; (b) axial cathode support with attached magnet.
pole pieces which extend quite close to the anode and thus reduce the
magnetic field gap. Since the weight of a magnet that will produce a
given magnetic field strength over a given iron-sectional area increases
very rapidly with the length of the gap, considerable magnet weight
can be saved in this manner. It is customary to supply this type of
magnetron permanently attached to its magnet. The saving of size

and weight resulting from this axial construction may be considerable.
1.4. The Resonant System.—The combination of the anode block,
output circuit, end spaces, and other parts that contribute to the r-f
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properties of the tube is defined as the resonant system. It is a most
important part of the magnetron, for it determines the frequency and
also plays a most important role in the electronic processes. This
integration of the entire oscillating system into one tube complicates
the problems of design and limits the versatility of single magnetrons as
compared with low-frequency oscillators where the oscillator tube is
distinet from the associated resonant circuits.

The function of the resonant system is to present to the space charge
an r-f field of the desired frequency and with the proper configuration and
magnitude to effect an efficient generation of radio frequency and further
to transmit this power to an external load. The resonant system accom-
plishes this by storing a quantity of the energy to produce the r-f fields,
at the same time releasing a portion to the external load.

A specific example will serve to fix the order of magnitude of the
quantities involved in this process. For a pulse-power input of 100 kw,
the 2J32 (see Fig. 1-11) delivers about 40 kw to its load, or about
1.3 X 10 joule per cycle, as the frequency is 3000 Mc/sec. Under
these conditions, about 102 joule is stored in the resonant system, and
this energy results in an r-f voltage at the anode surface of about 10 kv.
About 55 per cent (or 45 kw) of the input power is lost because of heating
of the anode by the electrons, and 5 per cent (5 kw) is lost because of
heating of the anode by the circulating r-f currents.

A good resonant system should have characteristics that make the
operation of the magnetron as stable as possible. This includes stability
against small changes in frequency and stability against discrete fre-
quency jumps and constitutes one of the major problems of magnetron
design.

The entire resonant system presents a problem too complicated for
qualitative analysis, and it is usually assumed that only the anode block
and output circuit affect the operation of the magnetron. Although
this assumption is not always justified, as other parts of the magnetron
may, indeed, affect its operation, it has usually been possible to isolate
their effects and consider them as special problems. The discussion
here of the resonant system as well as the more detailed treatments in
Chaps. 2, 3, and 4 follow this procedure.

The so-called hole-and-slot anode block, shown in Fig. (1-10 and Fig.
1-11), will be used as a specific magnetron about which the following
discussion will be centered. When operating in the desired manner,
oscillations result in a disposition of charge and electric field, as is illus-
trated in Fig. 1-13. Figure 1-13a illustrates such a disposition at an
instani when the concentration of charge on the ends of the anode seg-
ments is at maximum. One-quarter of a period later the electric field §
and charges have disappeared and currents are flowing around the inside f




(a) ®)

F1a. 1:13.—Charges, r-f fields, and currents in an oscillating magnetron.

The phase of (a), (b), and (c) differs progressively by »/2.
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of the cavities, producing a magnetic ficld along the hole portion of the
cavities. Figure 1:13b depicts the currents and ficlds at this instant;
Fig. 1:13¢ shows the disposition of charges and electric fields another
quarter period later.

n=3 n=4
F1a. 1-14,—Field and charge distributions for the four principal modes of an eight-oscillator
magnetron.

Oscillations of this character are called m-mode oscillations from the
fact that the phase difference between adjacent resonators is . Other
modes are possible, however, and each is characterized by varying phase
differences among the eight coupled resonators that comprise this
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particular resonant system. The number of possible modes is reduced
by the fact that the resonator system is a closed one and the total phase
shift around the resonator system must be a multiple n of 2r, where n
is called the mode number. For an eight-resonator magnetron, the
important modes are n = 1, 2, 3, 4. In generaln =1,2,3, - - - , N/2
where N is the number of resonators. The phase differences between the
resonators in the example chosen forn = 1, 2, 3, 4 are v/4, /2, 3r/4, and
7. The charge and electric field distribution for these modes is illustrated
in Fig. 1-14. In principle, one would also expect modes corresponding
to n > N/2 in which the phase difference between resonators is some
multiple of = corresponding to harmonics of the individual resonators.
These modes apparently are unimportant to the operation of magnetrons
and have only rarely been observed. Figure 3-7¢ shows the charge
distribution for this harmonic type of oscillation.

A more serious complication arises from the twofold degeneracy of
some of the N/2-modes discussed above. The amplitudes of oscillation

" of the separate resonator segments may be considered as points on a
closed standing-wave pattern containing a number of wavelengths equal
to the mode number. The degenerate forms of each mode correspond
to a rotation of this standing wave so that the positions of the nodes and
antinodes are interchanged. Figure 1-15 shows views of a magnetron
in a plane parallel to the cathode and at the same time opened out so
that the anode faces lie in a plane. The closed lines surrounding the
segments represent the magnetic flux, and the numbers on the faces of
the segments indicate the maximum charge. The smoothed-out dis-
tribution of charge around the anode is shown below each. Eight such
views are shown representing the four principal resonances or modes,
each with their two degenerate forms. One of the degenerate forms of
the (n = 4)-mode corresponds to a condition of zero charge on every
segment and thus does not exist. This nondegenerate characteristic
of the (n = N/2)-mode is an important feature of m-mode operation.

If all the resonators are identical, the frequencies of these degenerate
modes are identical. In actual magnetrons, asymmetries usually exist
and the degenerate forms have slightly different frequencies. As a
general rule, then, it may be stated that the number of modes encoun-
tered is equal to N — 1. The question of the frequencies of these
(N — 1)-modes can best be discussed by considering first an unstrapped
anode block such as is shown in Fig. 1-13.

Each of these resonant cavities is similar to a simple oscillating
circuit consisting of a lumped L and C. = Although the inductance and
capacitance of a magnetron cavity is not strictly lumped, the inductance
of the oscillator resides mainly in the circular hole, and the capacitance
mainly between the parallel plane surfaces of the slot. Since the fre-
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quency is a function of the product LC, it is possible to represent one
resonant cavity by a conventional parallel resonant circuit whose fre-
quency is given by f = (1/2r)(1//LC). Considering the frequency of

N

Fia. 1-15.—~—View from the cathode of an opened-out magnetron showing the mag-
netic fields and charge distribution for the four principal modes each with its two degenerate
forms.

the resonant system as a whole, it should be noted that the arrangement
of these cavities is such that for the desired or w-mode of operation,
their individual €’s and L’s are all connected in parallel. Thus
the effective capacitance for the whole magnetron oscillator is NC and the
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effective inductance is L/N, where N is the number of resonators. The
frequency of the magnetron is thus nearly that of an individual resonator.

The frequencies of the various modes will, in general, differ. This
may be seen by referring to Fig. 1-14 and observing that the distribution
of charge for the various modes is not the same and thus the effective
capacitance for the various modes will be different. The same could
be said with regard to the currents and effective inductances, so that
different frequencies are to be expected. Unfortunately, the difference
in frequencies of the modes, or mode separation as it is called, is not so
great as is desirable. A separation of 5 to 20 per cent between the
desired mode and the nearest one to it

is needed. n

Figure 1-16 shows the effect of n=h |
strapping on the wavelengths of the g10 "3 i
modes of an eight-oscillator 10-cm mag- = |
netron. Wavelengths for an un- § o T~ !
strapped tube are shown, and it isseen 3 2z
that the = or (n = 4)-mode has a § 8 R }
separation of less than 2 per cent from e— Unstrapped
the (n = 3)-mode. The frequencies Single ring strapping _..!

of these modes depend upon the height 7
of the end spaces, but for practical Fie. 1-16—Effect of strapping on
structures they are always quite close the mode separation of an eight-oscil-
together. As a further complication, lator magnetron.

each of these modes, except the m-mode, is a close doublet. Chapter 2
deals with the problem of the unstrapped resonant system in detail.

The effect of adding straps to an unstrapped resonant system is to
increase the separation of the = or (n = N/2)-mode from its nearest
neighbor, usually the (N/2 — 1)-mode. In Fig. 1-16, the mode spectrum
of a single-ringed strapped magnetron is shown. The m-mode separation
is now seen to be over 10 per cent. KEven greater mode separation is
possible if larger or more straps are introduced. Several forms of
strapping are shown in Fig. 4-1.

The explanation of the effect of strapping can be made in several
ways. The simplest is to conceive of the strap as maintaining r-mode
oscillations by tying together points that for this type of oscillation
remain at the same potential. A more sophisticated explanation arises
from a consideration of the effective capacitance and inductance of the
straps for the various modes. For m-mode operation the concentration
of charge on the strap is a maximum and the effective capacitance of the
strap is relatively large. For any other mode the potential difference
between adjacent segments will be less, resulting in less charge on the
strap and thus decreasing the effective capacitance that it contributes to

Degree of strapping ————
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the resonant system. Also, for other modes, currents will flow along the
entire strap, decreasing the effective inductance of the resonant cavity.
Thus the straps present both a reduced capacitance and a reduced induct-
ance for all non-r-modes, and the frequency of these modes is increased
with respect to the -mode. A detailed quantitative analysis of strapped
resonant systems is given in Chap. 4. Certain types of magnetrons, par-
ticularly low-frequency and low-power ones, have a good mode separation
even without straps. In these cases strapping does not improve their
performance, but in general the increase in stability and efficiency resulting
from strapping is so great that straps are considered essential. The addi-

Waveguide output

SNSNNNN

/A~ Output
P transformer

fron
pole
piece

(Section AA)

F1a. 1-17.—Cross-sectional views of rising-sun magnetron.

tion of straps to the original British magnetron resulted in a majorimprove-
ment in performance. A great deal of the erratic changing of the mode of
oscillation characteristic of the unstrapped tube was eliminated; the
efficiency was improved; and operation at higher-power levels was possi-
ble. For example, the early British unstrapped magnetrons operated
very unstably, had efficiencies ranging from 15 per cent to 40 per cent, and
were prone to erratic mode shifting, while the strapped variety showed
efficiencies consistently above 35 per cent and, over a considerable
range of input conditions, rarely shifted modes.

At high frequencies (above 10,000 Mec/sec), straps become quite
small and mechanically difficult to incorporate into the magnetrons.
In addition, their small spacing results in large copper losses and thus
lower magnetron efficiencies. Adequate mode separation in these high-
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frequency tubes is still essential. The rising-sun magnetron is a most
successful anode-block design for producing good mode separation at
high frequencies that does not possess the disadvantages of strapping.
Examples of this design are shown in Fig. 1-17. The essential features
of the rising-sun design are the alternately large and small resonators.
When oscillating in the desired mode the charge on the segment ends is
alternating plus and minus, as shown in Fig. 3-7a, and the frequency is
intermediate between that of a large and a small resonant cavity. The
r-f voltage across the large cavities is larger than that across the small
cavities, and as a result the r-f fields extending into the :
interaction space from the segments are not uniform, as 2001
shown in Fig. 1-13, but alternate between some large and
small values. Fortunately this interaction-space field
appears to be nearly as efficient as a uniform one. The

peculiar mode spectrum of a typical rising-sun anode 15042
block is shown in Fig. 1-18. As an example an 18- :2
resonator magnetron is chosen because one of the main %’L—
advantages of the rising-sun design is its effectiveness i
when a large number of cavities is needed. 1.00d— 9 m

The difference between the mode spectrum of a —8
strapped resonant system and a rising-sun system is
conspicuous. The desirable operating mode in both
cases is the N /2- or r-mode, but in the strapped system O.SOJ
the r-mode is the longest wavelength, while in the rising- Fia. 18—
sun system the m-mode lies between groups of modes at Wavelength distri-

. . bution of the nine
alonger and shorter wavelength. Optimum separation piincival modes of
between the m-mode and the long and short wave-length an 18-oscillator ris-
neighbors, which in general should not be the maximum ;:lag‘;is:g ;"?‘;’Jﬁf o
possible, is obtained by adjusting the ratio of the fre- cavity depth m =
quencies of the large and small cavities or by other 1.9
means such as closing off the ends of the anode block (Fig. 11-12).

The explanation of this mode spectrum is given in Chap. 3 in terms
of an equivalent circuit and also by field theory methods. This mode
spectrum can be visualized by considering the rising-sun anode block as
consisting of two resonant systems, one comprising the small cavities
and the other the large cavities. Each of these systems by itself would
have the type of mode spectrum of an unstrapped anode block with N/2
resonators. Some coupling exists, however, between the corresponding
modes of these two systems, and the resulting irequencies differ from those
of the isolated systems by an amount that depends on the degree of
coupling. In Fig. 1-18 the modes numbered 1 to 4 correspond to the
first four modes of the nine large resonators, and the modes numbered
8 to 5 correspond to the first four modes of the nine large resonators.
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Weak coupling exists between 8 and 1, 2 and 7, etc., and their frequencies
are thus only slightly altered. The coupling between the w-modes of
the two systems is strong, however, and they combine to produce the
operating or (n = 9)-mode inter-
mediate between the two sets of
modes and an (n = 0)-mode whose
frequency is zero.

Associated with the m-mode of
a rising-sun resonant system there
is a net r-f current circulating
around the entire anode with the

Fic. 1-19.—Cuirents in oscillators of Same frequency as the w-mode.
rising-sun magnetron showing origin of  The source of this net circulating
circulating current. . .

current may be seen in Fig. 1-19.
The r-f currents in the large cavities exceed those in the small ones as is
shown by the length of the arrows in each cavity; as the large cavity cur-
rents are always in the same direction around the anode, a net circulat-
ing current results. The direction of this at the moment chosen is shown
by a dotted arrow.

This circulating current can
reduce the efficiency of the mag-
netron if the magnetic field is such
that the cyclotron frequency of
the electrons, as given by Eq. (1),
is close to that of the magnetron.

Finally mention should be
made here of some of the various
forms of resonant systems that
have been investigated. By far
the most usual and successful type
is that exemplified by the original
British design (see Fig. 1-11), and
the related rising-sun design.
Another type that has been the
subject of considerable experi-
mentation but is not generally
used is shown in Fig. 1:20. The
essential distinction between this
and the more usual cavity type is
that r-f currents flow axially along
the segments instead of the predominantly radial currents of the conven-
tional cavity type. Many variations of this basic design have been tried,
but r ne has been found to possess any advantage over the cavity type.

F1g. 1-20.—Magnetron anode block having
large axial r-f currents.
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Other forms of resonant systems have been investigated, but in most
cases they were found unsatisfactory. Examples of such attempts are a
linear resonator system and the so-called “inside out’” magnetron in
which the cathode surrounds the anode block. In both these designs,
oscillations in the desired mode were not observed. The performance
of all these various types of resonant systems has been poor in comparison
with the cavity type. That this is due to some basic reason seems
unlikely ; it is more likely a consequence of the fact that the designs have
not received the attention given to the cavity type. In any event, no
further mention will be made of them. ‘

1.5. The Cathode.—The cathode plays a much more important role
in the operation of magnetrons than does the cathode of any other
form of tube. In addition to being a source of electrons, a magnetron
cathode must dissipate the relatively large amount of heat resulting
from back-bombarding electrons. By means of so-called ‘““end shields”
it must prevent the axial escape of electrons from the interaction space,
and these end shields should not emit electrons. The cathode is also
part of the resonant system, as r-f currents are induced on its surface.

As a result of back bombardment, wide changes in the cathode tem-
perature occur between starting and operations conditions which com-
plicate the problem of emission. In pulsed tubes not only do these
changes in temperature occur, but extremely high peak currents are
extracted from the cathode. Current densities of from 10 to 100 amp
per cm? are obtained from oxide cathodes, depending on the pulse length
and other conditions.

The size of the cathode must be held within close limits so that
electrons are released to the space charge at a point where the r-f field
conditions are proper for the efficient functioning of the space charge.
Too small a radius results in mode instabilities; too large a radius results
in inefficient operation. The optimum size in most cases is such that
re/Ts equals or slightly exceeds (N — 4)/(N + 4), where r. and r, are
the cathode and anode radii and N is the number of resonators. The
end shields may be small if they are located within the anode block and
must increase in size as the distance above the anode is increased. No
definite specifications are possible, as the curvature of the magnetic field
at the ends of the anode also contributes to preventing the escape of the
electrons.

It is not surprising in view of these manifold requirements that the
cathode constitutes a major source of trouble and in nearly all cases is
the single element that determines the life of the magnetron.

Oxide cathodes in one form or another have been used in nearly all
pulsed and many c-w magnetrons. They are used in pulsed magnetrons
because of their ability to emit very large currents under pulsed operation.
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They are used in low-power c-w magnetrons because oxide cathodes are
more efficient emitters and do not involve large heater currents that
interact with the fixed magnetic field. The usual emission troubles are
encountered, particularly in very high or very low power magnetrons
where the back-bombarding electrons are not in the energy range for
efficient production of secondary electrons.

In pulsed magnetrons sparking (the generation of bursts of gas)
is a serious problem. The cathode is probably not wholly responsible
for this phenomenon, but local vaporization of the oxide coating is
observed, accompanied by the ejection of small pieces of the coating.
The cathode is thus presumed to be a major source of trouble. The
frequency and severity of the sparking is increased at high voltages and
high-current densities, but extremely low current denstties must be used
to reduce the sparking rate essentially to zero. The emission and
sparking of oxide cathodes is considered in detail in Part I of Chap. 12,
together with an account of some preliminary investigations on thoria
cathodes. Part II of Chap. 12 deals with the problems of cathode
design.

1.6. The Space Charge.——An electron in the interaction space of a
magnetron is acted on by a constant magnetic field parallel to the axis
of the cathode, a constant radial electric field resulting from the applied
d-c potential, and the varying electric field extending into the interaction
space from charges concentrated near the ends of the anode-block
segments. Under these conditions the electron is part of a space charge
with extreme variations in density, and the resulting problem is one of
considerable complexity which is understood only in a qualitative way.
No analytical expressions relating such quantities as current, d-c voltage,
r-f voltage, and magnetic field have been obtained. The qualitative
theory is presented here in outline. A more comprehensive review of
the whole problem of magnetron electronics is found in Chap. 6.

Consider the simple case of a single electron in the interaction space
of a magnetron in the absence of any perturbing r-f fields. In crossed
magnetic and electric fields, there is a force —¢E due to the electric field
and another, (e/c)v X B, due to the magnetic field, where E and B are
the electric and magnetic field strengths, e and » are the charge and
velocity of the electron, and ¢ is the velocity of light. The resulting
motion shown in Fig. 1-21 is approximately represented by superposing
a slow rotation around the cathode at nearly constant radius R, (the R,
rotation) and a faster circular motion with a smaller radius r, (the
ro rotation). The resultant of these two motions corresponds roughly
to the motion of a point on the circumference of a wheel as it rolls around
a circle somewhat smaller than the cathode in such a way that its center
moves in a circle of radius Ko. The speed of the slow R, rotation is given
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approximately by the ratio E/B. The fast r, rotation corresponds to
the cyclotron frequency and is thus determined by B alone; its angular
velocity is wo = eB/m. Although the angular velocity of this r, rota-
tion is constant, the magnitude of ro depends on the initial kinetic energy
of the electron and may vary for
different electrons. The maxi-
mum distance that any electron
can proceed toward the anode
(Ro + 7o) in the absence of r-f
oscillations is fixed by the ratio
/B and for good operating con-
ditions is made to be about half of
the way from cathode to anode. v
This description of the path of ~/
a single electron is exact only for Wi e/
the case of small r, and has little -
significance when normal space-
charge conditions exist. It is
given, as it assists in understand-
ing the interaction of the electrons Fie. 1-2_1.—Path fo_llo“.'ed by a single electron
with the alternating electric ficlds. in a nonoscillating magnetron,

In an oscillating magnetron, these electrons pass through the r-f
fields, shown in Fig. 113, and a change in their velocity results. A
somewhat surprising fact is that those electrons which are speeded up
have their curvature increased and return to the cathode while those
which are slowed down have their curvature

E reduced and move out toward the anode.

v> To make this appear reasonable, consider
Bev B the situation shown in Fig. 1-22. An electron
e u>%5 moves through crossed, uniform electric and
magnetic fields with a velocity v that is normal
_Ec to E and B. The force equation under these

“B  conditions is
u<%¢ BTev =eE + TI%)"” 4)

I-E,

Fia. 1.22.—Paths of elec- Where R is the radius of the orbit of the elec-
trons in crossed electric and  trons (R is positive for orbits curving down).
magnetic fields. Wh . . .

ere the path of the electronsis a straight line,
the condition is obtained by letting R = «. Equation (4) then reduces to

v="20. ®)

Inspection of Eq. (4) also shows that for v < Ec/B the electromagnetic
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force will be reduced and the electrons will be deflected in the direction
of the electric force. Forv > Ec¢/B, the deflection will be in the direction
of the magnetic force. The deflection that an electron suffers in this
example when speeded up or slowed down thus corresponds to what
happens in a magnetron, and it is significant that the operating conditions
are ones for which » ~ Ee¢/B.

The separation of the fast and slow electrons for an actual magnetron
is shown in Fig. 1-23. Consider an electron at point A at the instant
for which the fields are as shown. The r-f ficld at this point tends to

F1a. 1:23.—Paths followed by electrons in oscillating magnetron.

speed up the electron. As it speeds up, the curvature of its path is
increased, and it will move along a path corresponding to the solid line and
strike the cathode with appreciable energy. This electron is thus
removed from the space charge and plays no further role in the process
except perhaps to produce a few secondary electrons from the cathode.
An electron at point B, however, is in a decelerating r-f electric field. As
a result of the reduction in its velocity, the curvature is reduced. If
the frequency of oscillation is appropriate, this electron will always be in a
decelerating field as it passes before successive anode segments. The
r-f phase shown in Fig. 1-23 is correct only when electrons 4 and B are at
the points indicated. The result is that the electron eventually strikes
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the anode following a path of the type shown. Because of retardation by
the r-f field, this electron gives up to the r-f field a large part of the energy
gained in its fall through the d-c¢ field to the anode.

Since the electron moves from the cathode to the anode in a very
small number of oscillations, the condition that the electron keep step
with the variations of r-f oscillations, in its course around the cathode,
need not be exactly satisfied. Electrons, once in step with the r-f field,
remain in this state long enough to get to the anode even if their angular
velocity is not exactly correct. This explains why the operating condi-
tions of magnetrons are not very critical with respect to the magnetic
field, input voltage, or other quantities that might affect the velocity
of the electrons.

Appreciable energy is associated with the 7 rotation. This motion
takes place, however, in a substantially constant r-f field, since the R,
rotation keeps the electron in step with the variations of the r-f field.
As a result, the r-f field has little effect on the energy associated with
the 7y rotation during the last part of the trajectory.

This qualitative picture shows how those electrons whose initial
phase relationship is such that they absorb energy from the r-f field
are eliminated at once from the space charge. This is the result of the
fact that such electrons strike the cathode in the course of the first 7o
period. On the other hand, electrons that leave the cathode at such a
time and place that they transfer energy to the r-f field continue around
the cathode in a cycloidal path which expands toward the anode, trans-
ferring to the r-f field the energy that they gain from the d-c field.

In addition to describing the paths taken by individual electrons in
the interaction space, it is helpful to consider the behavior of the space
charge as a whole. In the absence of r-f fields, the space charge forms a
rotating cylindrical sheath around the cathode. Under the influence
of the r-f fields, following the reasoning above, the electrons in this
space charge that are in an accelerating r-f field travel back toward
the cathode, while those in a decelerating r-f field travel toward the anode.
As a result the rotating cylindrical sheath is distorted (for an eight-
oscillator magnetron) into a smaller cylinder with four spokelike ridges
running parallel to its axis. The configuration taken by the space
charge is shown in Fig. 1-24. This space-charge configuration rotates
with an angular velocity that keeps it in step with the alternating r-f
charges on the anode segments, and the ends of these spokes may be
thought of as brushing by the ends of the anode segments and thus
transferring charge from the cathode to the anode.

These spokes of space charge are rather narrow and have fairly sharp
boundaries. This is a consequence of the focusing action of the r-f fields,
the nature of which may be seen by considering Fig. 1:25. Here one of
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Fia. 1-24.—Space charge in oscillating magnetron.

F1G. 1-25.—Diagram showing focusing action of r-f fields on space charge.

the space-charge spokes is shown in proper relation to the r-f fields extend-
ing in from the anode segments, and dashed lines show the direction of
the d-c electric field. Any electron that, due to an excess in angular
velocity, precedes this rotating spoke would be at a point such as a.
Here the radial component of the r-f field and the d-c field are in opposi-
tion, and from the relation v = Ee¢/B its velocity will be reduced, even-
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tually returning it to the space-charge spoke. The converse is true for
an electron that lags corresponding to point b. When the space-charge
spoke is opposite a segment, the direction of the r-f field is such that this
focusing action would not take place, but at this moment the intensity
of the fields is zero, and the net effect of the fields on the rotating space
charge is to produce the focusing action mentioned.

The rf current set up in the oscillators is principally a displace-
ment current produced by this rotating space charge. As the spokes
of space charge pass in front of an anode segment, a positive charge is
induced on its surface. Half a period later, this positive ‘charge has
flowed around the back of the two adjacent oscillators to the two adjacent,
anode segments, and the spoke of the space charge has rotated to a
position in front of the next anode segment.

In addition to these displacement currents, conduction currents are
produced by the flow of electrons from space charge to the anode. These
electrons, however, arrive at the anode at such a time as to constitute a
conduction current 90° out of phase with the r-f voltage and thus do not
contribute energy to the oscillations.

1.7. D-c Voltage Magnetic-field Relationship.—The concepts dis-
cussed in Secs. 1-4 and 16 lead to a simple expression relating the operat-
ing voltage V, the magnetic field B, the wavelength A\, and the anode and
cathode radii, respectively 7, and r.. Again as an example the magnetron
shown in Fig. 1-10 is chosen. For efficient operation of the magnetron
V and B must be such that the angular velocity of the electron keeps
pace with the changes in phase of the resonators. Thus an electron
must move from a point opposite any segment to a point opposite the
next in one-half a period. Assuming that the electron is intermediate
between the cathode and anode this distance is

2ir<ra+rc
N A

where N is the number of resonators. The velocity must then be

_ T(Ta + Te)
=g
N2
i)
where f is the frequency of the magnetron. Introducing the mode
number

0| =

and N =
_we(re + r,)'

- n)\o

o

(6)
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From Eq. (5) the velocity of the electron is given by v = E¢/B; and if
one makes the simplifying assumption that the field E is given by the
relation E = V/(r, — r.),

Ve

' B -7 @
Equating (6) and (7) gives
=T (2 _ g2
V=2 ¢t B ®
If this problem is solved rigorously, Eq. (8) becomes
=T (2 _ 2mme ,
V=2 - (B o r,,) ©)

which is of the same form as Eq. (3), Sec. 1-1, developed by Posthumus.
Equation (9) reduces to

V volts = 320‘" (r2 — 712 <B —
[}

(10)

No

10.600)_

This voltage (which is a linear function of B) is known as the Hartree
voltage after Hartree! who developed this theory. This voltage is that
at which oscillations should start provided at the same time that B is
sufficiently large so that the undistorted space charge does not extend
to the anode.

Figure 126, which is known as a Hartree diagram, explains the
situation. This is a plot of Eq. (10) together with that of the Hull
cutoff parabola given by Eq. (2). This diagram is based on the mag-
netron shown in Fig. 1-10. To the left of the cutoff parabola no oscil-
lations occur as ordinary anode current is drawn., To the right of this
parabola no current flows unless oscillations exist to distort the space
charge until it touches the anode. This distortion is dependent on the
existence of the proper electron velocities just discussed, and therefore
current flows only when V and B correspond to a point near one of the
straight lines representing the different values of n. Note that as n
decreases, the electron must travel a greater distance around the cathode
in one period and thus a larger E/B is required. This is evident from
the (n = 3)- and (n = 2)-lines whose position was calculated assuming
the same wavelengths as the (n = 4)-mode. Considerable departure
from these lines is observed experimentally as a result of drawing large
currents. The dotted lines above and parallel to the (n = 4)-line show
the order of magnitude of this effect for different currents.

Important relationships among A, V, B, and r, can be obtained from
the formula for the cutoff parabola Eq. (3) and the Hartree resonance
formula Eq. (10). Assuming a constant ratio r./rs, consider the effect

! Hartree, CYD Report.
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Fig. 1-26.—Hartree diagram.
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Fig. 1-27.—An array of anode blocks of different wavelength and power output. Top

row: 10-cm, pulse power 2500 to 0.1 kw; second row: 3.2 cm, pulse power 600 to 0.025 kw;
single block and insert 1.25 em, 80 kw,
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of keeping B and M fixed and varying .. In Eq. (9), V is proportional
to 2, so that operating conditions remain unchanged if the operating
voltage is increased proportional to the square of the anode radius.
This relationship is illustrated in Fig. 1-27. 'The upper row are all 10-cm
anode blocks which have operating voltages of 50, 25, 15, 5, and 1 kv,
respectively. The reduction in anode diameter with voltage is evident,
although the number of resonators is not the same for all of these blocks
and some allowance must be made on this account. The second row
shows a corresponding series of 3.2-em anode blocks whose operatlons
voltages are 30, 20, 5, and 2.5 kv,

It may be seen from the same equations that if ¥ is kept constant,
7, must vary roughly as Ao and B as 1/, in order to preserve equivalent
operating conditions. A simplified proof of these relationships is possible,
neglecting the final term in Eq. (10) which, in general, is small compared
with B the product (r2 — r2)B ~ X. Since r./r. is assumed constant,
r2B ~ X\ and from Eq. (3) Sec. 1

r.B = const.
Combining the two proportionalities gives the static proportionalities

Ta™~ A
and

1
B~

Two major difficulties in making very short wavelength magnetrons
are inherent in these expressions: The cathode and anode become exces-
sively small, and the requirements for magnetic fields excessively high.

1.8. Component Modes.—In Sec. 1-4 the modes of the resonant
system are discussed; and if longitudinal oscillations are excluded, the
number of these modes is stated to be N — 1, each of which is charac-
terized by a certain field distribution and frequency. The most effi-
cient process is based on the equality of the angular velocities of the
rotating space charge and rotating r-f fields. Another possibility is
the excitation of a mode by the interaction of the space charge with
one of the components of the r-f field rotating less rapidly than the
fundamental.

These components of the fundamental mode patterns are associated
with the fact that the variation in intensity of the r-f field around the
anode is not sinusoidal. The nonsinusoidal spatial variation can be
represented by a sum of Fourier terms, each of which corresponds to a
closed rotating wave containing a number of cycles, or complete periods,
different from the fundamental and rotating with a different velocity.
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These components are limited, according to Hartree,! to those which
contain a number of complete periods around the circumference, given
by the relationship

¥ =n-+mN, (11)

where m is a whole number, n the mode number of the fundamental,
and N the number of resonators. The angular velocity of these compo-
nents is given by
_ 2xf
+w, ~ ) (12)
where f is the frequency. Equation (11) applies only to the case of the
symmetric anode block, whether it is strapped or not.

These components have a physical significance. If the electrons
forming the undistorted space charge have angular velocities close to
that of one of these components, the effect of the r-f field will be cumula-
tive and the space charge will be distorted into the form shown in Fig.
1-24, but with a number of spokes equal to v. The field of the compo-
nents (or fundamental) that have a different angular velocity will not
remain in phase with the electrons, and its effect will average out after
a few cycles.

Table 1'1 shows the values of v for the important components of the
four modes of an eight-resonator magnetron. Negative values of v mean
that the component is rotating in a direction opposite to the fundamental
and values of v for m = 0 correspond to the fundamental field pattern
of the modes.

TaBLE 1-1.—VaALUES oF v (NUMBER oF CYCLES) FOR CERTAIN COMPONENTS OF THE
Four PriNcipAL MoDES oF AN EIGHT-RESONATOR MAGNETRON

n
m
1 2 3 4
0 1 2 3 4
-1 —7 —6 -5 —4
+1 +8 +10 49 +11 +10 +12 11
-2 —~15 —14 —13 —12
+2 +17 +18 +19 +20

Since for every value of n there is a fundamental rotating in both
directions, producing the familiar standing-wave pattern, there are two

! Hartree, CVD Report.
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complete sets of components each rotating in opposite directions. This
is implied by the *+ sign in Eq. (12).

Although the number of components is infinite, only values of ¥
for +m up to 2 are given, since higher values are of no practical impor-
tance. Actually, mode excitation in the case of symmetric resonant
systems has been observed only for the (m = —1)-component. The
unimportance of higher m values is probably due to the fact that they
are necessarily associated with large values of |y} and that the falling
off in intensity of these components is proportional to (r/r,)y. Moreover
large v values give rise to values for the yA product considerably larger
than that of the m-mode and require different operating conditions.

The nomenclature v/n/N has been adopted to designate first the v
component responsible for the excitation of the mode number n in a
magnetron having N oscillators. Thus the m-mode in an eight-oscillator
magnetron, when excited through its fundamental, is represented by the
symbol 4/4/8, and the (n = 3)-mode when excited by its fundamental by
3/3/8. If the (n = 3)-mode is excited through the (y = —5)-compo-
nent, it is designated by 5/3/8. The 3/3/8 and 3/5/8 modes have
identical frequencies and r-f characteristics.

In unstrapped magnetrons and less frequently in strapped magnetrons
component excitation of unwanted modes is a source of considerable
trouble. Difficulties are most likely to arise when the product y\ for
the m-mode and an unwanted mode are nearly equal, as under these
conditions both have the same angular velocity and may be excited by
the same rotating space charge. The 2J32 (Fig. 1-10) is a good example.
This tube has a tendency to oscillate during occasional pulses in the 5/3/8
mode. It is significant, however, that increased strapping of this tube,
which decreases the wavelength of the (n = 3)-resonance with respect
to the (n = 4)-resonance, resulted in mode changing by making the
vN’s for the two modes more nearly equal. This problem is considered
in detail in Chap. 8.

In rising-sun magnetrons an extension of these principles must be
made due to the two sets of resonators. The mode spectrum (Fig.
1-18) shows that the coupling between these two sets of resonators is
small except for the m-mode and (in considering the interaction of the
field components of the modes with the space charge) that the modes
associated with large and small sets can practically be treated separately
as though each consisted of a resonant system consisting of N/2 oscilla-
tors. Equation (1) then becomes

*/=nim%- (13)

When applying this relationship to the long- and short-wavelength
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group shown in Fig. 1-18, the resonances marked n = 8, 7, 6, 5, 4 should
be assigned the values n’ = 1, 2, 3, 4, respectively. Table 1-2 gives
the values of vy for significant m’s for a typical rising-sun magnetron
shown in Fig. 1-17 having 18 oscillators. Both long- and short-wave-

TaBLE 1-:2.—VALUES OF v FROM Eq. 3 FOR RISING-SUN MAGNETRON wiTH N = 18

norn’
m
1 2 3 4

0 1 2 3 4
-1 -8 -7 —6 ~5
+1 10 11 12 13
-2 —17 —16 —15 —14
42 +19 +20 +21 +22

length resonances are observed to compete with (n = 9)- or mmode
operation.

Excitation of the long-wavelength resonances occurs through the
(m = —1)-component, as these give v values such that the y\’s may be
close to the value of y\ for the m-mode (the N's are larger, and the v
smaller). From Table 1-2 it is seen that components for values of m
other than m = —1 need not be considered, as the y\ product will not
be close to the v\ for the =-mode for the longer-wavelength set.

Excitation of the short-wavelength resonances can, on y\ product
consideration, occur through the (m = +1)-component. Here the A
product may approximate that of the r-mode, since the N’s are shorter
and the ¥’s larger than the m-mode values. Actually only the components
of (n" = 1)-mode have ever been observed to interfere with w-mode
operation.

The theoretical basis for these results is found in Sec. 3-2, and its
application to practical magnetron design is considered in Sec. 11-6.

1.9, Efficiency and Frequency Stability.—The uses to which a magne-
tron is put are usually such that it is desirable to attain both high effi-
ciency and high-frequency stability against changes in load and changes
in input conditions. These objectives are not consistent, and most
magnetrons represent a compromise between efficiency and stability
that depends on the particular application. The problem is a most
important one in magnetron design.

For any given frequency, a variety of oscillator configurations is
possible corresponding to different oscillator impedances of L/C ratios,
and the efficiency and frequency stability desired determine the proper
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oscillator impedance to use. Figure 1-28 shows three forms of oscillators
arranged in order of increasing impedance.!

The efficiency n with which a magnetron converts the input power
into r-f power at the output (cathode power is excluded) is given by
n = (power input—losses)/power input. The losses arise from the

() ) ©

F1a. 1-28.—Three common types of magnetron cavities: (a) slot; (b) hole and slot; (¢) vane.

bombardment of the anode by the electrons and from the circulating r-f
currents producing I?R losses in the copper and other materials. To
distinguish these two sources of energy loss it is customary to express the
over-all efficiency n of a magnetron as the product of the electronic
efficiency 5. and circuit efficiency 5. orn = 5. The electronic efficiency

is defined as the fraction of the

10 input power that is converted into
08 r-f power within the anode block,
. \ and the circuit efficiency is the
206 | fraction of this r-f power which is
-g 04 ) T transmitted totheload. Theprob-
' / 2! lem of high efficiency may then
0.2 be restated as one of making the
0 " product 7.7, & maximum.

Y Pp1 2 3 Both 5. and 7. are affected by

Fra. 1-29 —Efﬁc}i’fanl:i::b“:sry :n“fsunction of the impedance of the OSCillatOI‘S,
‘ "oseillator impedance ye. but in different ways. The circuit

efficiency 7. is highest in high-im-
pedance oscillators such as shown in Fig. 1-28¢, since the circulating cur-
rents areless. In Chap. 4 it is seen that the electronic efficiency 5. depends
on the r-f voltage across the oscillator gaps in such a way that maximum 7,
occurs at a lower r-f voltage than can usually be obtained in actual
operation, and the problem of increasing 7. is therefore one of reducing
the r-f voltage for a given power output. The r-f voltage can be reduced
either by decreasing the oscillator impedance (decreasing L/C) or by
coupling the system strongly to the load so as to reduce the amount

t It should be remarked that the straps of a magnetron also affect the oscillator
impedance, but for the sake of brevity they are not considered here.
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of stored energy. The most efficient oscillator configuration is that
compromise between a high-impedance oscillator giving high 5. and a low-
impedance oscillator giving high 5. which gives a maximum 5. In
Fig. 1-29 two curves show the manner in which %. and 7, vary with
oscillator impedance. A third curve shows how % varies, and the opti-
mum impedance is indicated by P.

Increasing the loading of the magnetron generally increases its
efficiency. Only rarely can the loading be made so heavy that a decrease
in efficiency results because the r-f voltage is reduced below the optimum
value. It is usually necessary to place a lower limit on the frequency
stability, and this requirement alters both the loading and resonator
impedance values corresponding to maximum efficiency. Heavy
loading means closer coupling between load and magnetron, and this
makes the magnetron more sensitive to load changes; in other words,
it reduces the frequency stability. A high-impedance oscillator also
has less stability against load changes than a low-impedance one. The
determination of the oscillator impedance and loading to satisfy given
requirements for frequency stability and provide maximum efficiency
is given in Chap. 10.

In addition to providing resonators with the proper frequency and
impedance, the anode block should provide suitable mode separation,
reasonably uniform r-f voltages across the different gaps, and adequate
thermal conduction away from the anode surface and have a configuration
that it is possible to construct.

Further interpretation of the Hartree diagram is made in the following
section in connection with a discussion of performance charts.

1.10. Performance Charts and Rieke Diagrams.—For the interpreta-
tion of microwave magnetron performance it is necessary to make
observations that are not usually made at lower frequencies with con-
ventional types of tubes. The reasons for this are that at the frequencies
considered the concept of lumped circuit constants breaks down and also
because the magnetron is inseparable from its oscillating circuits. As a
result of experience, particularly with pulsed magnetrons, it has been
found convenient to present operational data by means of two charts
discussed here.

Four parameters determine the operation of a magnetron: two asso-
ciated with the input circuit and two with the output circuit. A typical
set is the magnetic field B, current I, the conductance G, and susceptance
H associated with the r-f load on the magnetron. The observed quanti-
ties are three in number, usually power P, wavelength A\, and voltage V.
The problem of presenting these observed quantities in terms of the four
parameters is greatly simplified by the fact that the input and output
parameters operate nearly independently of each other. Thus, it is
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possible to keep G and B (the load) fixed and study the effect of H and [
on P, \, and V with the assurance that the nature of the results will not
be greatly altered by changes in ¢ and B. Conversely, H and I (the
input) may be fixed, and the effect of G and B on P, \, and V observed.
The “performance chart’’ shows the relationship among H, I, V, P,
and X for constant load, and the “Rieke diagram’’ shows the relationships
among G, B, P, \, and V for constant I.

Performance Charts.—Figure 1-30 is a performance chart for a typical
pulsed magnetron (4J31) with a frequency of about 2800 Mc/sec.
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Fia. 1:30.—Typical performance chart of a magnetron (4J31).

[

0

It has been customary to plot V in kilovolts along the ordinate and
current  in amperes along the abscissa. On such a graph the lines of
constant I{ appear as more or less parallel lines which slope upward to
the right. Thus (referring to Fig. 1-30) if the magnetron is operated at a
constant magnetic field, say 2100 gauss, the relations of voltage and cur-
rent are given by points on the H = 2100 gauss line (at 20 kv, the current
drawn will be 48 amp).

On the same chart are plotted the lines of constant power output.
These are the solid lines the form of which suggests hyperbolas; they
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show the pulse r-f power that is obtained under varying input conditions.
Thus at 20 kv and 48 amp, the power output is 470 kw. This same
power can also be obtained at 25 kv and 30 amp with a magnetic field a
little less than 2700 gauss. Curves of constant efficiency, obtained
directly from the above data, are added. These are the dotted lines
looping up and to the right on the diagram.

It is possible to add to this chart lines of constant frequency, so that
the variation of frequency with input parameters may be studied. This
information is useful in establishing limits on the variatiorr of current
during a pulse. The dashed lines are contours of constant frequency.
In this case, they are nearly parallel to the lines of constant magnetic
field, an ideal condition, since changes in current produce no change in
frequency.

Voltage ——»

Current ————
Fia. 1-31.—Idealized performance chart.

Many of the features of a performance chart can be interpreted in
terms of the qualitative electronic theory (Sec. 1-7) and in terms of a
Hartree diagram such as shown in Fig. 1-26. If the efficiency of a
magnetron were independent of V and I, the contours would be hyper-
bolas asymptotic to the V and I axis. Inspection of Fig. 10-16 shows
that to a first approximation this is the case. But it is the departure
from this condition which is of interest and must be explained in terms
of the variation in the efficiency as revealed by the performance chart.
A simplified and somewhat idealized performance chart is shown in
Fig. 1-31 which shows only contours of constant magnetic field and
constant efficiency for a typical strapped magnetron. Performance
charts for rising-sun magnetrons differ in having a distinet drop in
efficiency at magnetic fields which by IEq. (1) result in a cyclotron fre-
quency close to the operating frequency. This characteristic of rising-
sun magnetrons is discussed in detail in Chap. 3.

Performance charts for different types of strapped magnetrons show
considerable divergence, and Fig. 1-31 has been idealized to show only
those features which are common to most performance charts.
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1. Except for very low currents, increasing the current I while
keeping B constant results in a decrease in efficiency. In Fig.
1:26 this corresponds to moving up from the n = 4 Hartree line
toward cutoff.

2. Decreasing the magnetic field at constant current results in a
decrease in efficiency. In Fig. 1-26 this corresponds to moving
along the n = 4 Hartree line toward cutoff. From this it is
clear that on the Hartree diagram electronic efficiency is increased
if V and B correspond to points that are both near the Hartree
line and far from cutoff. All magnetrons, the operation of which
appears normal, support this conclusion. Accordingly, magnetrons
are designed to operate at relatively high magnetic fields which
correspond to points far from cutoff.

3. A drop in efficiency at very small currents which is indicated by a
curving up of the line of constant efficiencies at the extreme left
of Fig. 1-31. This is probably due to unproductive leakage current
from the cathode. This falling off in efficieney is usually accom-
panied by a drooping of the lines of constant B as shown in Fig.
1-31.

These are the three most general features shown by performance
charts. An inspection of those given in Chap. 19 will reveal many
unusual configurations which are not capable of explanation.

Rieke Diagram.—The performance of a magnetron in terms of its
output parameters, or r-f loading, is conveniently presented on a Rieke
diagram. It would appear useful to express the r-f loading in terms cf
the resistance and reactance presented to the magnetron at the output
loop. Since these quantities are difficult to determine experimentally,
the Rieke diagram is in terms of quantities that can be obtained with ease
experimentally. At microwave frequencies, it is customary to determine
the constants of a load by observing the phase and magnitude of the
standing waves set up by it, and the Rieke diagram is designed to use
these experimental data directly. The desired range of r-f loading is
obtained by adjusting a tuner until the desired phase and standing-wave
ratio is indicated by a sliding pickup probe such as shown in Fig. 18-4.
The standing-wave ratio is transformed into a reflection coefficient K by
the relation K = (1 — p)/(1 4+ p) and K and # used as coordinates of a
polar diagram. This is known as the Smith! chart, and the Rieke
diagram is obtained by measuring the power output, frequency, and
voltage at constant H and V for enough points on this chart to construct
contours for these quantities. Such a diagram is shown in Fig. 1-32.
Inspection of the Rieke diagrams given in Chap. 19 will show considerable

1 P. H. Smith, Electronics, 12, 29 (1939).
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variation in their form; but as in the case of performance charts, certain
features are exhibited by all of them.

Referring again to Fig. 1-32, it is scen that the power contours
approximate one set of circles tangent at one point on the (K = 1)-circle,
and it is significant that on a Smith chart the contours of constant load
conductance are, indeed, such circles. The frequency contours are seen
to approximate sections of a second sct of cireles which are everywhere
perpendicular to the first set and are tangent at the same point. Again

0375

Magnetic field Peak current
5500 gauss \ 10 amperes

Frequency of 0 Mc contour=9375 Mc/sec
F1a. 1-32.—Typical Rieke diagram (725).
it is significant that on a Smith chart the contours of constant susceptance
correspond to this second set of circles.

The comprehensive treatment of the Rieke diagram is found in
Sec. 7-5.

Rieke diagrams provide information of considerable importance to
magnetron designers and users. They are usually furnished as operating
data, together with performance charts, by magnetron manufacturers
for every type of tube.

As an example of their usefulness consider the effect of a mismatch
in the magnetron’s output. Assume that a reflection coefficient of
0.4 (p = 2.3) exists, and suppose further that the phase of this mismatch




42 INTRODUCTION [Sec. 1-11

at the magnetron is such that the voltage minimum corresponds to point
A (Fig. 1-32). The result will be a power output for the specified input
conditions of about 50 kw., If the phase of the reflection is changed,
say by increasing the line length between the magnetron and the mis-
match until point B is reached, the power output falls to 33 kw. The
efficiency of the magnetron at point A is thus 50 per cent greater, but
operation at this loading may be unsatisfactory for reasons of stability.
As representative of a general class of load instability, consider the
effect of a change in phase angle about the loading A4 of +7.5° (arrows)
that might result from the turning of an imperfect rotary joint. The
power output will be essentially unaltered, but a maximum change in
frequency of 10 Mc/sec occurs. At point B, however, corresponding to
light loading, a phase shift of +7.5° results in only a 3-Mec/sec frequency
shift. Inradar systems or in other applications where frequency stability
is required under conditions of changing load, a compromise must be
made between efficiency and frequency stability on the basis of Rieke
diagrams. Magnetrons are usually designed with an output coupling
such that the center of the Rieke diagram, which corresponds to a
matched load, represents a reasonable compromise between efficiercy
and frequency stability.

It is possible to adjust the loading on the magnetron to any reasonable
value by the suitable use of r-f transformers in the output line. As an
example, suppose that it is desirable to operate the magnetron repre-
sented by Fig. 1:32 at a point of high efficiency and low-frequency
stability corresponding to point A. This can be accomplished by intro-
ducing a transformer that sets up a 2 to 1 VSWR and making its distance
from the magnetron such that the phase of this VSWR corresponds to
point A. By moving this transformer along the line in either direction
one-quarter wavelength, operation corresponding to point B can be
obtained.

1.11. Pulsed Magnetrons.—The most outstanding characteristic of
microwave magnetrons is their extremely high pulse-power output which
is over one thousand times the best c-w output at the same frequency.
These high powers are due mainly to three factors.

1. The electronics of the magnetron are such that high efficiencies
persist at very high levels of power.

2. The oxide cathode under pulsed conditions vields currents one
hundred times that obtained under d-¢ conditions.

3. The procedure of pulsing at very small duty ratios has largely
eliminated the problem of anode dissipation.

Because of these factors and intensive development as a result of the
war effort magnetrons with frequencies up to 25,000 Mc/sec and pulse-
power outputs from 0.02 to 2500 kw are available.
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These high-pulsed powers together with the discovery of high-pulsed
emission from oxide cathodes are examples of the many advances that
have resulted from the introduction of pulsed techniques. From the
standpoint of magnetron operation, however, pulsing also introduces
certain problems. The most serious one is the buildup of oscillations
from noise to full power that must occur reliably for every pulse in a time
that may be as short as 10~8 sec. Failure of the buildup to occur results
in misfiring or mode changing, a2 phenomenon exhibited by essentially
all magnetrons under certain conditions.

The explanation of mode changing is extremely involved, as the
buildup of oscillations in a desired mode depends on a large number of
factors, many of which are interrelated. The more important factors are

1. Rate of rise of voltage pulse.

2. Rate of buildup of oscillations in desired mode and undesired
modes which involves the loading of the various modes and the
noise level from which they start.

3. Voltage and current range over which oscillations in the desired
mode and undesired modes may persist.

4, Tmpedance of the pulser.

As an example of the interrelation of these factors consider a particular
kind of misfiring that results when the pulse voltage reaches and exceeds
the limits within which oscillations can start before oscillations can
build up. Misfiring or mode changing will then be more likely to occur
when the rate of rise of the pulse is fast, when the voltage range over
which oscillations can occur is small, and when the impedance of the
pulser is high, since a high-impedance pulser means a higher no-load
voltage for a given operating current and voltage. This example is a
simple one, and in practice the solution of a particular problem of mis-
firing or mode changing will involve the transient characteristics of the
pulser as well as the transient characteristies of the magnetron and the
reactions of the pulser and magnetron on each other. The theory of
transient behavior is given in Chap. 8, but the problem is such a compli-
cated one that it can sometimes be used only as a guide to the experi-
mental elimination of trouble.

The demands of microwave radar resulted in a rather extensive
development of magnetrons the frequencies of which are concentrated
more or less into four bands. Figure 1-33 shows on a logarithmic chart
the frequency and peak power of magnetrons that have been produced
in appreciable numbers and thus constitute well-tested designs. Produc-
tion magnetrons are identified by their RMA type numbers, and experi-
mental ones by the designation assigned to them in the laboratory where
they were developed.
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From this chart it is seen that the maximum pulse power increases
with the wavelength.! If this power is limited by either cathode emission
or voltage breakdown within the tube, the maximum pulsed power would
vary as A? for comparable designs.

A summary of the more important characteristics of pulsed mag-
netrons in several wavelength bands is given in Table 1-3. These data
refer to magnetrons in production and do not represent the limits reached

TaBLE 1-3.—SUMMARY OF CHARACTERISTICS OF REPRESENTATIVE MAGNETRONS IN
CERTAIN WAVELENGTH Banps (1945)

Wave- Average Pulse Input |Maximum
Input .
length Power RMA power power | L e imped- pulse
band, level type output, | output, o'Lage, ance, length,
kv
cm watts kw ohms sec
30 | ... 4J21 800 800 25.0 500 6.0
10 { High 4J39 600 1000 30.0 400 2.5
Low 2J39 100 10 5.0 1000 2.0
3.9 High 4J50 500 250 20.0 700 5.0
' Low 2J41 3 1000 2.5 1500 0.5
1.26 | ... 3J21 50 50 15.0 1000 0.5

in experimental tubes. The figures for maximum pulse length should
not be taken too literally, as the input power affects the maximum pulse
length at which stable operation can be obtained.
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Fig. 1:34—Maximum pulsed-power output and efficiency for magnetrons developed
up to 1946.

Detailed information on the construction and operation of most of
these tubes is given in Chap. 19.
! An exception to this are the magnetrons in the 1000- to 1500-Mc/sec range

whose pulse power is not so high as might be expected. This situation results from
a lack of need for very high powers in this wavelength range.
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This information reflects the status of pulsed magnetrons only up to
the year 1946, and it is interesting to speculate on future trends.  Figure
1.34¢ shows the highest pulsed power obtained from experimental
magnetrons at three wavelengths bands for the years 1940 to 1945, and
Fig. 1-34b shows the efficicncy of these tubes during the same period.
From Fig. 1-34a it must be concluded that this design of high-frequency
generator has not been fully exploited as far as maximum power output
is concerned, since the curves show that the power obtained is roughly
proportional to the integrated effort put into development. The leveling
off of the 10-cm curve results from a cessation of work in this band, while
the increasc in the 3.2- and 1.20-cm curves reflects continued effort by
the Columbia University Radiation Laboratory. Figure 1-34b indicates
that the cfficiency of magnetrons as they are now designed is reaching a
limit, as the curves for all three bands have leveled off.



PART I
RESONANT SYSTEMS

The description of a microwave magnetron given in Chap. 1 has shown
that the device may be naturally analyzed into three parts which differ
in function. These are the electron stream, the resonant system, and
the output circuit. The electron stream, flowing in crossed magnetic
and electric fields, interacts with that part of the field of the resonators
which penetrates the interaction space in such a way that energy is
continually abstracted from the electrons to appear as electromagnetic
energy in the resonant system. The principal function of the resonant
system is to serve as a frequency-determining element. It accomplishes
this by storing the energy received from the electrons over a large
number of cycles. It may be thought of as a filter circuit with a narrow
pass band which allows only the frequency component in the electron
stream that is of interest to be transmitted. Finally the output circuit
constitutes a coupling path between the electron stream and an external
load. The properties of this transmission path are so arranged that the
r-f voltages which the electron stream encounters are suitable for efficient
power transfer.

The purpose of the four following chapters is to discuss some of the
fundamental electromagnetic properties of the resonant system and of
the output circuit. The simplest feature common to all resonant systems
used in multisegment magnetrons is that they should be capable of being
fed from a series of slots in a cylindrical anode, parallel to the axis of the
cylinder. Systems filling this requirement may be devised in great
variety; in practice, three such schemes have been used almost exclu-
sively. These are the unstrapped system, the strapped system, and the
alternating unstrapped, or rising-sun, system, in order of historical
development.

The unstrapped system consists of a series of identical resonators
between which the only coupling is that provided by the electromagnetic
fields in the interaction space and in the end spaces. The alternating
unstrapped system also utilizes these coupling paths, but alternate
resonators are of two different kinds. The strapped resonator system,
on the other hand, has a system of identical resonators, but a special
coupling link is provided between each pair of neighboring resonators.
The following discussion will deal exclusively with these three types of
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resonant systems. In the practical design of magnetrons the unstrapped
system has been superseded by the other types, although it was his-
torically the first to be used. It may, however, be discussed theoretically
rather completely, and in the analysis a number of concepts are brought
out that are essential to the understanding of the rising-sun and strapped
systems. It is possible to discuss unstrapped systems fairly rigorously by
electromagnetic field theory, but the greater complexity of strapped
structures requires the use of a more intuitive approach by the use of
equivalent circuits.

The type of information sought in each case is essentially the same.
The fields in the interactions space, the mode spectrum of the resonant
system, and its dependence upon the dimensional parameters are found,
and a number of circuit constants of interest in the electron-field inter-
action or in the oscillator-load coupling are derived for the three cases.
The discussion does not take up specific problems in the design of reso-
nator systems, a topic that is extensively discussed in Chaps. 10 and 11;
instead, attention is concentrated on features of the three systems that
are of importance in over-all design.

In the chapter devoted to the output circuit, the latter is considered
primarily as a transducer the function of which is to convert the imped-
ance of an external load to such a level within the magnetron that the
clectron stream encounters r-f voltages such that it delivers power
efficiently. An account of transducer theory adequate for the needs

of the problem is given, and various classes of output circuit are considered
in some detail.




CHAPTER 2
THE UNSTRAPPED RESONANT SYSTEM

By N. KroLL

The unstrapped resonant system shown in Fig. 2:-1a was one of the
first systems developed for microwave multiresonator magnetrons.
Figures 2:1b and ¢ show variations of this early design. These anode
blocks consist. of an anode divided into a number of equal segments con-
nected by identical resonators. These resonators are referred to as “side
resonators” or ‘‘side cavities.”” Various shapes of side cavities are
possible; those shown in Fig. 2-1 are the ones most commonly used.
Although the unstrapped resonant system is now almost obsolete, a

(a) ) ()

Fia. 2:1.—Examples of unstrapped resonant systems: (a) with hole-and-slot-type side
resonators; (b) with slot-type side resonators; (¢) with vane-type side resonators.

careful discussion of it is worth while for two reasons. (1) Many concepts
that are used in the discussion of the more complicated systems are
based on those developed for this system. (2) The problems that arise
in the analysis of resonant systems and the possible methods for solving
them are seen in their simplest form in the study of the unstrapped
system.

2-1. The Magnetron Cavity as a Circuit Problem.—The interior of
the magnetron (anode block, interaction space, and end spaces) can be
thought of as constituting a cavity resonator of complicated geometry.
It is a well-known fact that such a resonator has an infinite number of
resonant frequencies and a particular field distribution associated with
each one. The rigorous method of solving these problems is to find
a solution of Maxwell’s equations that behaves properly at the boundaries.
However, because such a solution can ordinarily be found for only the
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simplest geometries, it will be necessary to employ circuit analogies and
approximate methods that use simplified geometry and simplified bound-
ary conditions.
Ny { ,/ , The problem will be simplified
| b4 [/ by making certain restrictive
| assumptions concerning the dis-
! tributions of charge, current, and
field. Consequently the solution
will contain only those modes
which approximately satisfy the
assumed conditions and will not
contain the complete set of reso-
nances. In addition, of course,
these assumptions introduce some
error in the resonances found.
The most interesting modes are
those with which the electrons can
couple, according to the scheme
described in Chap. 1. They re-
quire strong electric field lines

Fia. 2-2.—Typical orientation of electric
and magnetic fields in the side resonator of a .
magnetron. Solid lines indicate electric  gOINg from anode segment to anode

field; dotted lines indicate magnetic field. segment with little axial variation

of field. Thus, the initial assumptions are that the electric field be trans-
verse and that there be no axial variation of field. It then follows, as
shown in Sec. 2:5, that the magnetic field is axial and has no axial varia-
tion (see Fig. 2-2).

On the basis of the preceding assump-
tions the equivalent circuit representa-
tion shown in Fig. 2-3 is possible. The
circuit elements representing the side
resonators are labeled Y,; A is a sym-
metric network with N pairs of terminals
and represents the interaction space.
Such a representation requires that an
impedance or admittance at the various
terminals be defined. Figure 2-2shows
the situation at a side resonator. The
voltage at the terminals can be defined

B Fig. 2:3.—Circuit representation of
as M E. dS; evidently the voltage S0 the unstrapped resonant system.

defined will be dependent upon the path (assumed to be in a plane
perpendicular to the axis) of integration. This ambiguity, however,
will be of no significance if the path used for the computation of the
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admittance of a side resonator coincides with that used for the computa-
tion of the admittance of the interaction space.! The voltage so obtained
has no axial variation. Inasmuch as the magnetic field is axial, the
current is entirely transverse and is given by the magnetic field at the
terminals A and B multiplied by the length of the anode h. TUsing
current I and voltage V as defined above one might take for the admit-
tance Y = I/V.
There are, however, other possibilities. One can write
y_ LV*_ 2Pt
Vv Ty

where P* is the complex conjugate of the complex power (defined as
$VI*).2 The complex power can also be written in terms of the Poynting
vector

_ 1

)

which suggests for the admittance

/E X H*-nda,

v thBE*XH-nds
= ‘[ABE‘dSlz ’ 1)

where the path of integration is the same for the two integrals. The
expression, 3/E X H* - nda, depends upon the surface over which the
integration is performed and will, in general, differ from $VI*. Conse-
quently, the two expressions for admittance will differ; and for reasons
to be given in Sec. 25, the latter expression is the one that will be used.

Because end-space effects are small in many applications, they have
been completely ignored in the suggested equivalent circuit. There
are, however, certain applications for which end-space effects are
important. These will be discussed in Sec. 2-8.

The problem has now been reduced to the investigation of the circuit
properties of the side cavities and of the interaction space. More specifi-
cally, it is necessary to calculate the admittance of the side resonators
as a function of frequency. It is also necessary to calculate the admit-
tance of the interaction space at any pair of terminals as a function of
frequency, with proper restrictions on the admittances seen at the other
(N — 1) pairs of terminals.

Two different approaches will be used. The first consists of represent-
ing each circuit element by a lumped-constant network. The magnitude

! In order to obtain manageable expressions one often finds it necessary to have
the paths coincide only approximately.
tV and I are the peak rather than the rms values of voltage and current.
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of the constants of the network must ordinarily be determined experi-
mentally. The choice of network is at best an intelligent estimate so
that the over-all results are ordinarily only semiquantitative. This
method, however, has the advantage of simplicity and serves to introduce
some important concepts. The second approach involves the calecula-
tion of the distribution of electric and magnetic field from which the
admittance can be calculated. The main advantages are (1) more
accurate results, with no need for guessing networks or for experimental
evaluation of parameters, (2) the fact that the field distribution is part
of the result.

2.2. Equivalent Network for the Side Resonators.—A simple parallel-
resonant circuit (Fig. 2-4) will serve as an equivalent network for the side
resonators. The admittance is given by the well-known formula

HwC — (1/xL)]. The values for the induct-

fo,g.'v\ ance and capacitance can be chosen to give

the correct value for the resonant frequency

C ws = 1/+/LC and the correct admittance at

1 one other frequency. If the range is

" limited, the intermediate values will be

l £ ] fairly accurate. Itisto benoted that there

Fic. 2-4.—Equivalent net- 1S no resistance in the circuit. In all fre-
work for a side resonator of an  gyency and field calculations resistive losses
unstrapped resonant system. R .

will be neglected on the assumption that the
walls are of perfectly conducting material. Actually, the conductivity
of materials used is so high as to make errors resulting from this assump-
tion negligible in comparison with others already introduced.

2-3. Equivalent Network for the Interaction Space.—The interaction
space is represented by the network in Fig. 2:5. This network takes into
account capacitance between the anode segments and the cathode. It
ignores all inductive effects and capacitive effects among anode segments.
It should be most nearly correct when the anode circumference is small
compared with the wavelength and the distance between cathode and
anode is small compared with the width of the anode segments. (These
conditions are rarely met by magnetrons.) It would be possible, but
lengthy, to compute the admittance at a set of terminals assuming the
admittances jlwC — (1/wL)] across the other (N — 1)-pairs. The
problem can, however, be simplified considerably by making use of
the symmetry present. Because all the side resonators are identical, the
admittance looking into any one of them is the same. At resonance the
admittance at the various terminals of the interaction space matches
the resonator admittances; thus, at resonance, all of these admittances
must be the same. It can also be assumed that the voltage and current
distribution in one section differs from that in the adjacent section only
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by a phase difference that is constant from section tosection.! With
the above information it is a simple matter to compute the admittance.

Q)\/I\/(l)
[
.\o"
WD
[2
! ~

F1a. 2-5.—Equivalent network for the interaction space of an unstrapped resonant system.

The admittance looking into the network (see Fig. 2:6) is given by
1,/vg.  From Kirchhoff’s laws

Ioor =1y — Tgy,
I = dg1 — 1y

VAB = I.q_ly
Jwc
VCD = .IJJ
Juwe
and
9, = Van — Ven.
Thus

Iq—l - Iq — 27vq — (iq—l + 7:‘1+1).

Ve =
Jwe Jwe

From the assumption that corresponding currents in adjacent sections
differ only by a constant phase factor it follows that

Tgo1 = 1777 and Tor1 = 14607;
therefore,
2 — (ei'y + e—i'r)
Vg = lg————F—,
jwe
I'Tt can be proved from the symmetry that the existence of any resonance for
which the above is not true implies the existence of a partner resonance having the
same resonant frequency and a distribution of amplitude as assumed. This means,
of course, that a degencracy of at least the second order must exist.
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and the admittance Y is given by

tg _ __ Jue

v, 2(1 — cos v)

Evidently the admittance of the network depends upon the phase
angley. Sofarinthischapterthis

< quantity has not been restricted.
Because each section must be in
A ] L‘ ¢ phase with itself, ¢¥7 must equal 1,
- ¢ ; - — , H
fot g, e iq Ll ey and: ‘Ny = 27r'n,. \\here n is any
3= =] positive or negative integer or zero.
Thus,
B D YV, = —(— 3% .
Fi1G. 2-6.—A single section of the equivalent a2(1 2mn
network for the interaction space. — €08 N

2-4. Spectrum Predicted by the Equivalent Network.—Resonance
occurs when the admittance looking out from the side resonators equals
the admittance looking into the interaction space, that is, when

il - =y, = Jee
]<wC wL) = Ya —2( 27rn),

1 — cos =+~

N
or
1 we
€08
By setting wo = 1/4/LC and ¢/C = p it is found that
‘itz -1 = _L_2_,
2(1 — ¢o8 _;:f_n)
or
@ = wp ! 2
14
2(1 — €08 2Ln

A different resonant frequency is found for each value of n in the
range 0 to N/2 [or (N — 1)/2if N is odd], after which the values begin
to repeat. That is, replacing n by n + mN (where m is an integer)
or by —n leaves w unchanged. A qualitative diagram for the spectrum
is given in Fig. 2-7.

Each resonance, together with its associated fields (or voltages and
currents), is called a “mode of oscillation’ or, more simply, a “mode.”
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The number n is called the “mode number.” If there are several
linearly independent sets of field (or voltage) distributions with the same
resonant frequency, the mode is said to be “degenerate,” the order of
the degenerency being the same as the number of linearly independent
distributions.

All of the modes have a second-order degeneracy excepting those for
which » =0 or n = N/2. In other words, the same frequency is
obtained by replacing n by —n, but a linearly independent set of ampli-
tude coefficients e?*i*#/¥ (g is the section number) is obtained by replac-
ing n by —n, except forn = 0 and n = N/2.!

Uo— -
30X,
3 <
>
§ & \
= & 15X,
& 4
[
. xo \T\_‘

o 1 2 3 a4 0 1 2 3 4
Mode number n Mode number n
@ (]
Fia. 2:7.—The spectrum predicted by Eq. (2) with p = 1 for an eight-resonator unstrapped
system.

The limitations of this equivalent circuit will become apparent after
the admittances have been more correctly calculated. It suffices here
to note that the circuit gives a good qualitative picture of the order and
separation of the longest-wavelength group of magnetron modes. In
order to apply the theory quantitatively it is, of course, necessary to
evaluate experimentally the parameters p and wo. The over-all quantita-
tive agreement depends upon the particular way in which these param-
eters are evaluated. The previous discussion associates wo with the
side resonators alone and suggests that this parameter may be evaluated
by means of an experiment involving only the side resonators. For
example, one might measure the resonant frequency of the cavity formed
by placing two side resonators facing each other. A value of p can then
be chosen to give the correct resonant frequency for one of the modes.
Under these conditions the predicted spectrum will differ considerably
from the observed one. On the other hand, if one chooses p and w,
to give the correct values for the (n = 1)- and the N/2-modes, the

1 While replacing n by n 4+ mN leaves the frequency unchanged, it also leaves
the amplitude coefficients e2vi»/¥ unchanged. The addition of mN corresponds to an

increase in the phase difference between voltages and currents at adjacent sections
by 2xm, which, of course, has no physical significance.
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frequencies of the intermediate modes may be given with reasonable

accuracy.t
2:6. Admittance of Side Resonators by Field Theory.—Consider the
side resonator shown in Fig. 2-8, which has an arbitrary cross section
and an arbitrary boundary (dotted line) across which the admittance is to
be measured. A distribution of the tangential electric field (E.) varying
sinusoidally in time with arbitrary frequency w is assumed along this
boundary. Because the tangential electric field is zero along the metal
walls, it is possible in principle to apply Max-
well’s equations and compute the electric field
throughout the bounded region. A further
application of Maxwell’'s equations yields the
B magnetic field throughout the bounded region,
/ and the admittance caa th:» be computed using

the formula [from Eq. (1)]
F1a. 2-8.—A side reso-

nator of arbitrary cross Y = /lJ’E;"H,dS
section. = _|fE;dS]2 )

where the integrals are evaluated along the dotted boundary. Evidently
the value computed for the admittance depends upon two arbitrary
choices: the choice of the boundary across which the admittance is
measured and the distribution of tangential electric field assumed along
this boundary. The choice of the boundary has no particular significance
as long as the boundaries chosen for two adjoining elements (for example-
at the junction between the interaction space and a side resonator)
coincide. On the other hand, the values found for the resonant fre-
quencies will to some extent depend upon the assumed electric field.
Clearly, the proper distribution to use is that which actually obtains at
resonance; but because this distribution is ordinarily not known, it is
necessary to assume some arbitrary one. Equation (1) is used rather
than I/V for the admittance because it can be shown? that resonant
frequencies computed on the basis of this expression are considerably less
sensitive to the assumed field distribution than are those computed on
the basis of I/V. In the work that follows, the boundary will always

1 This latter procedure can be justified by improving the equivalent network for
the interaction space. That is, one can take into account the capacitance between
adjacent anode segments by introducing a capacitance. ¢/, between each pair of
terminals of the network in Fig. 2-5. In this case Eq. (2) still holds with w, now given

by 1/+/L{C ¥ ¢) and p by ﬁ: and thus wo depends upon the interaction space as

well as the side resonators.

zN. Kroll and W, Lamb, “The Resonant Modes of the Rising Sun and Other
Unstrapped Magnetron Anode Blocks,” Appendix I. J. of Applied Physics, 19,
183, (1948).
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be chosen so that there is either exact or very near coincidence of bound-
aries when two elements are joined. The tangential electric field along
the boundary will always be assumed constant.

The Rectangular-slot Side Resonator.—Differently shaped side reso-
nators must be considered separately. The rectangular slot shown in
Fig. 2-9 is considered first because it is the simplest. Maxwell’s equations
for free space are

Y
curl E + %—?— =0, 3)

curl H — % =0, 4 V //7/9
]
divD = D = «E ; z
iv 0 ( «E), (5) 7
and ra
divB =0 (B =pH). (6 = .
The time variation of all field com- Fia. 2-9.—Rectangularslot side
ponents is given by et because for an resonator.
impedance calculation one is concerned only with fields harmonic in time.
The operator 9/0¢ is then replaced by jw.
It has already been assumed that £, = 0 (E is transverse) and that E

has no axial variation. It follows directly from Eq. (3) that H is axial
and has no axial variation. That is,

H, = H,(a,y)e, H, =0, and H,=0. )
From Eq. (4) it follows that

hi(_)
Ez — —] €0 6H,

k oy ’ (®
and
Nz
_ .Neo 8H,
v =17 k oz ’ (9)

where \/po/ec = impedance of free space = 376.6 ohms and

2
k=w\/#o€o=7"r'

By combining Eqs. (3) and (4) it can be shown that H,, E,, and E, must
satisfy the familiar wave equation

v + k°F = 0. (10)

A distribution of E satisfying the following conditions must be found:
(1) Its components E, and E, must satisfy Eq. (10); (2) E, = O0atz = [,
and E, = 0 at y = +d/2, (3) E, must have the constant value E at
z =0; and (4) all fields must be continuous. The rectangular-slot
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resonator can be thought of as a parallel-plate transmission line or wave-
guide with planes located at y = +d/2 and short-circuited with a plane
atz = 1. Assuming d < M/2 (as it always is) the complete fundamental
set of fields for a parallel plane waveguide (omitting the time factor
ei*t) ig given by

EP = Tk, cos (%%p y) eFkez)

E®» = — ~2de sin (2%;1) y) etk
and (1)

H®» = Jk cos (%%P y) pthsz

fald
€

where
2xp\’ . e
k, = ) - k (p = any positive integer)
and by
EP = T jketita,
EQ =0,
and
. 12
Ho — B 2
ﬂ

€0

Any field configuration in a parallel-plate section, subject to the
condition of no axial variation, must consist of a linear combination of
the above fields.! Any field so formed satisfies the boundary condition
E.lz, +(d/2)] = 0. Application of the condition that E, be constant
at £ = O restricts the solution to a combination of the zero-order fields
[E® and H®]. The requirements remaining are that E®» = 0 at z = {

and E® = E at z = 0. Constants « and 8 must be chosen such that
(Ey)smt = —jhk(ae® — Be=i*) = 13)

and

(Ey)s—0 = —Jk(e — B) = E. (14)

ek E \. d _ ekt E
A= gkl :bfk ’ an 8= e — gl \ —jk ’

which give

Thus,

E e ey _ pSink{l — 1)
By = rm —gm et = O = B 09)

! See, for example, R. I. Sarbacher and W. A. Edson, Hyper and Ultra-high Fre-
quency Engineering, Wiley, New York, 1943, pp. 119-132.



SEc. 2-5] ADMITTANCES BY FIELD THEORY 59

and thus
_ —jE cos k(I — x)

® \/ﬁ sin kl
P

It is now possible to compute the admittance from

(16)

d
2

h f_g H.Ef dy
2

d
2
l[ d E, dy
T2
to be evaluated at z = 0.
Because E, and H, are both independent of ¥, the integrations are trivial
and

Y =

2
2

Y = =" cot ki, (17)
£q
€0

which is the well-known form for the admittance of a short-circuited

h
d v wo/eo

The Cylindrical Side Resonator.—In solving for the admittance of
the cylindrical resonator shown in Fig. 2:10, the cylindrical coordinates
p, ¢, and z are preferable. Assuming
as before that E. = 0 and that E has
no axial variation, it follows from Max-
well’s equations that

transmission line of length ! and surge admittance

H. = H.(p,¢)e’", (18)
H, = H, = 0,
Iz
_ €o aH,
E, = T 3’ (19)
and _
. Ho
J [
_ € OH,
Ed’ o k a—p (20) Fig. 2:10.—Cylindrical resonator.

The fundamental set of solutions for the wave equation in cylindrical
coordinates are the functions
Jp(kp)e?
and
Ny(kp)e'?*,
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where p is zero or any positive or negative integer and J, and N, are
the well-known Bessel and Neumann functions.! The functions J, are
regular at p = 0, whereas the functions N, become infinite at the origin.
For this problem only the functions J, need to be considered, since the
solution must be regular at the origin. Taking

H® = J,(kp)eirs (21)
it follows from Egs. (19) and (20) that

Ep = —p = Talkoyers,

Ep =3j i‘—O"J;,(kp)e:w. (23)

(22)

and

A linear combination of these functions is required such that £, = 0 at
p=a when ¢ £ ¢ = (2r — y) and E, = the constant E at p =a
when —y¢ < ¢ < y¢. Such a combination can be found by making a
Fourier expansion for E; in terms of the functions £®. Thus

Bo=gt ) Clithaom, (24
.

where the constants C, are to be determined.

(Eg)p—a = ]\/iioo 2 Coy(ka)ere = f(¢), (25)

where

f(¢) =0 fory £ ¢ £ 2r — ¢,
and

fle) = E  for =y < ¢ <.
The constants €', will be given by

, 1 2
gwum:gﬁewwww=—/ e dg

= (m%fio for p = 0,

™
=ﬂ for p = 0.
kis

! See, for example, J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New
York, 1941, pp. 351-360.
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Thus
Eolp,d) = E¢ 2 J’(fZ; <gm W) K
B —]E‘l’ »(kp) {sin py
Epe) = -1 y PJ;,(ka>< W) "
and )
. | By Jolkp) (sin py)
H.(p,0) = —J \/M - E T (ka) (W)e ’

Because J, = (—1)?J_,, the above relations can be rewritten as

i = B[ 2 3 (529 445 o)

E,o,0) = 22¥ 2 (F28) 7250 sin e, (26)

v = E 38 25 (55 e

For a calculation of admittance, H.(a,¢) is required for —¢ < ¢ < ¢
and F,(a,¢) over the same range. Now

Ey(a,9) = E for —y < ¢ <V,

and

and

o) = [ B[ T 4 5 E(S‘W T cos po | om)

The admittance looking in across the boundary indicated in Fig. 2-10
is given by

—h [ ¥ aE%(a,¢)H.(a,¢) do
Y = —\0‘& .
[[7, aEe(a,6) ds]

which yields

€ E-\l«a o(A a) sin py\ Jp(ka) {2 sin py
Hhi [ 12 E( )J;(M)( p >]

[2\P0E]

. jeo R olka) sin py\ Jp(ka) |
=J \/:021ra [Jo(l.a) +2 z ( ) J;(]\'ﬂ)] (28)

Y =
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Although the admittance function looks complicated, it is not difficult
to compute for low frequencies.! Like all admittances in lossless systems,
this admittance has a slope that is always positive (neglecting the factor
7; and like that of the rectangular
resonator, it has an infinite set of
resonances which are alternately series
and parallel. The series resonances
occur at the roots of J7(ka), and a par-
nllel resonance occurs between each
pair of series resonances.

The Annular-sector Resonator.—
One of the most common resonator
shapes is the annular-sector resonator
shown in Fig. 2-11, which is often
referred to as the ‘‘vane type' resonator. Application of .he methods
used in the preceding paragraphs leads to the following expression for

the admittance.?
Y o I Uak)lN ()] = GDINo(ra)].
o ¥a [J (k)N (kD)) — [J1(kB)][N 1 (ka))
This function behaves very much like the other admitt-::ce functions.
Infact Y approaches [—j A/ (eo/ro) (h/¢a) cot k(b — a)} as k becomes large.

e e

(@)

F1a. 2-12.—Arbitrary terminations: (a) for a rectangular-slot resonator; (b) for an annular-
sector resonator.

7

F1a. 2:-11.—Annular-sector resonator.

(29)

Transformation Formulas.—Because many side resonators are of
composite shape, for example, a rectangular slot or anunular sector termi-
nated by a hole, transformation formulas giving thc admittance at the
front of the resonator in terms of the admittance at the back are useful.
For the rectangular slot (Fig. 2-124a)

. Y
__sin Ml 4+ ——————
Y = h . \jtq (]’l/d) vV E(\/uq
= ._J — =
@” No S Y
(Gh/d) V/ €/ o

cos kl

; (30)

cos kl — sin &/

1 See Sec. 2-11.

* In practice the center of curvature of the rear surface often coincides with the
center of the magnetron rather than with the center of curvature of the annular
sector. The error in Y, however, is negligible if one takes for b the dimension indi-
cated in Fig. 2-11.
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for the annular sector (Fig. 2-12b)

o(ka) — JA(kD)Ys = § +/(eo/ o) (R/¥D)To(kD) o

J olk
¥ \/j BT N Ye — A/ (eofma) (h/¥b) No(kb) (“).
no Va Tuka) — (kD) Y, — j v/ (eo/ o) (R/¥1)J o(kD) o N (ka)
N1(kb) Y, — 57/ (eo/ o) (h/¥b)No(kb)
(31)

Although these formulas allow for a change in height at the junction,
they are considerably less dependable when such a change occurs.

2-6. Admittance of the Interaction Space by Field Theory.—The
admittance of the interaction space (Fig. 2:13) is evaluated by applying
the methods used for the circular res-
onator combined with those used for A}/ ‘444408, n
handling the lumped-constant equiva-
lent of the interaction space. Again it
is convenient to use cylindrical coordi- /
nates. In the following derivations ;

= *he number of anode-block seg- !
ments, 7; = the anode radius, 7. = the 7&(
cathode radius, and 20 = the angle . qul
subtended by the space between the b
segments of the anode block. It will %”.'""/Am
be assumed that E, across each gap is T'® \21:3};1;23 'r"ei‘::::‘t":yss’izﬁ_or an
constant and further that the field at
any gap differs from the field at an adjacent gap only by a constant phase
factor. At the cathode and at the anode segments E, must, of course, be
zero. Explicitly, the boundary conditions for E, are as follows:

E¢(TC,¢) = O’
E,(ra,¢) = Eéi?*v¥e  for (—2]’\’,—9 - e) <¢< (—2% + o), (32)

and
E¢ (Tﬂy ¢) = 0

for all other values of ¢. In Eqgs. (32), ¢ is the gap number and has the
values O to N — 1, and n is an integer. As in the solution of the circular

resonator, the solution for the interaction space is compounded out of
the functions

Jy(kp)eiv® and N, (kp)eir*.

In this problem it is necessary to use both functions to ensure E, = 0
at p = r.. It is evident that the following set satisfies this condition.
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; JL(kr,
H(08) = Zylkpers = | Jalhe) = T 0 |
-z
B (p,8) = = Zulko)em, (33)

E (p,6) J\F’Z%MW—J [J (ko) — > @j% v;(m)]m.

A linear combination of the functions FE$(p,¢) that will satisfy the
conditions stated at p = 7, can be found, as they were for the circular
resonator, by making a Fourier expansion. Thus

Bo=iy2 ) emmen (34)
y=—

The constants C, are determined by

©

Bro®) =5[22 ). G4l = f(9), (35)

y=—w

where
J(¢) = Eelzmnie for (2;’\"@ _ )< 6 < (2‘((/ i 0)

and f(¢) = 0, for all other values of ¢.
Then

tTO 7 (1 — 1 o —1
Z)C.,Z7(Ar.,) =3 /0 e¢f(¢) do,

N~-1

E 2xq/N+6
- 2 it e+ dg,
2n 2xq/N—0

=0

N-—1

= Q M z e (2an/N) q@~i(2?1q/N),

T v@
=0

sin y#

fory = n + mN,
vy

NGO
E3
where m is any integer
= 0 otherwise.

Thus the fields are given by



SEc. 2-6] ADMITTANCE BY FIELD THEORY 65

©

S ey T

|

P v8 [} ZL(kra)
.. N§ sin v0\ Zy (ko) .
Ep(p,¢) - '—]E m 2 7( 70 > ZZ(](‘T@) eJ"N, 7=n+mN (36)
and ’
_ . |eENS - sin 8\ Zy(kp) .,
Hz(py¢) - J '\/; - _2 ( ,)/9 )Z{y(kra) e,

The admittance looking in across the boundary indicated in Fig. 2-13
at the gth opening is given by

(2rq/N)+6
_l) /; TGE:(TMQS)HZ(TG)‘#) d¢

Y - 2rq/N)—8
(Zrg/N) +0 2 ’
[/ Tally(Ta,®) d¢‘}
(2rg/N)—86
which yields
_ . |eo Nh sin v0\* Z, (kra)
Yo =Jali 2. E ( 8 ) 7 (kra)’ @37)

when y = n + mN.

It is evident that as a result of the assumption concerning E4 at the
anode radius, the admittance looking in at each gap is the same. This is
a condition which is obviously necessary for resonance. The functions

E (Sin 70)2 Zy(kra)
76 Z! (kra)

m=—

will henceforth be designated by the symbol Zﬂ (krs). The dependence

of the admittance on both frequency and = is contained in these func-
tions. As in the solution for the equivalent circuit, cnly values of n from
0 to N/2or to (N — 1)/2 need to be considered because the functions are
not changed when 7 is replaced by —n or by n + mN.

The low-frequency behavior of the admittances Y, as predicted by
the field theory (Fig. 2-14) is qualitatively similar to that predicted from
the lumped-circuit network. As the frequency approaches zero, the
values of Y, for n # 0 approach zero with finite positive slope in either
case. Furthermore this slope decreases as m increases. On the other
hand, the ratio of these slopes for different n as predicted by the field
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theory is quite different from that predicted by the lumped-circuit
network. For n = 0 the behavior in the two cases is also somewhat
similar, because Y, is infinite according to the lumped-circuit network,

krg o

F1a. 2:14.—The qualitative behavior of the admittance functions for an interaction space
with N = 8 [see Eq. (37)].

whereas the field theory predicts that it will approach minus infinity
as the frequency approaches zero. In addition the field theory predicts
an infinite set of alternately series and parallel resonances (indicated by
the infinities and zeros of the admittance functions) for each of the
admittances, which have been omitted by the lumped-circuit network.

Y,or-Y, -

Fig. 2:-15—Graphical representation of the resonance equation Y, = —Y,. The first
asymptote corresponds to the first series resonance of Y1; the second to the first series reso-
nance of ¥,.

2.7. The Spectrum Predicted by Field Theory.—As in Sec. 24 the
spectrum is found by setting the admittance looking out from a side
resonator (the negative of the admittance looking in) equal to the
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admittance looking into the interaction space. That is, Y, + Y, =0
at resonance, where Y, is the admittance of a side resonator. Since both
functions involve the frequency in a complicated way, it is best to solve
the problem graphically by plotting

both admittances as a function of k 1o
as shown in ‘Fig. 2:15. The reso- 1
nances are those values of k at which
intersection occurs. A typical spec-
trum as predicted by the theory ap-
pears in Fig. 2-16. A comparison
with the spectrum of the equivalent
circuit shows a qualitative similarity
for the resonances with wavelengths
longer than that of the first parallel
resonance of the side resonators. As
are those of the equivalent circuit, Mode number »

each resonunce predicted by fild Ty, 216 Typiea speeram pre
theory i1s a doublet (degeneracy of system. Only the larger wavelength
order 2) except, those for whichn = 0 £ous, wre show. The 7w he
or N/2 (these are nondegenerate). resonators, A.® being the p 4+ 1 parallel
This result follows from the fact that  resonance.

although the same wavelength is obtained for —n as for n (except in the
case of n = 0 and n = N/2), the electromagnetic field is different and
the two fields are linearly independent. The equivalent-circuit theory
has missed all of the resonances that
occur at frequencies higher than
that of the first parallel resonance of
the side resonators. The equiv-
alent-circuit representation is con-
siderably improved in this respect if
the side resonators are represented
by short-circuited transmission
lines instead of by simple lumped
LC-circuits.

Inasmuch as there are an infinite
number of resonances associated
with each value of n, n is inade-
quate for designating a particular

Wavelength A

L 2:17.— ion of an 18- t .
Fre. 2 IZnstg?::;iZgg:n?xtasr;rste;: SomA%Yr  mode. Henceforth n will be used

to designate a principal resonance,
that is, a resonance of the first group or the lowest-frequency root of the
resonance equation. Resonances of the pth higher-order group [that is,
members of the (p + 1)-group or the (p + 1)-root of the frequency equa-
$ion] will be designated by n,,.
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The most important features of the spectrum can be best described
in terms of a specific example. The 18-resonator anode shown in
Fig. 2-17 will be used. Only relative dimensions are significant, and
accordingly all dimensions are given as fractions of the 9-mode wave-
length. The dimensions and the wavelengths of the members of the
first group are given in Table 2-1. The most significant feature of this

TaBLe 2-1.—THE First GrROUP OF RESONANCES OF AN UNSTRAPPED
REsONANT SysrrM*
An
Mo
. 840
.226
.104
.055
.030
.016
.007
.003
.000

3

© 00D O W N~
b e e e e

* Dimensions (see Fig. 2-17):
2 _ 0170 (d =di = ds) da 0.325
Ay Py
g—’ = 0.595 ¢ = 0.068 radian

spectrum from the point of view of magnetron operation is the bunching
together of the resonances for large n. Furthermore, as N increases,
the separation between the (N/2)-mode and its neighboring modes
decreases rapidly.! By a proper variation of parameters the separation
of these modes can be somewhat increased. In general, the separation
between modes is increased by increasing the cathode diameter, increasing
the anode diameter, and increasing the width of the resonator openings
as compared with the width of the anode segments. The separation
is also increased by using a resonator shape that yields a slow variation
of admittance with frequency.? There are, however, practical limitations
that prevent any of these factors from being sufficiently altered to obtain
a well-separated 9-mode.

The higher groups of resonances are similar in character to the first
group, except, of course, that the frequencies are much higher. Ordi-
narily, the higher groups of resonances are of little interest in magnetron
aperation and, therefore, are not usually studied in detail. Attempts

1 The separation between the (N /2)-mode and the (% — 1)-mode varies approxi-

mately as (1/N2)(ro/NX).

2Tt is interesting to observe that all of these variations can be interpreted physi-
cally as means of increasing the ratio of the capacitance between the cathode and the
anode segments to the capacitance of the resonator. In the equivalent-circuit theory
this parameter alone determines the mode separation.
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have been made, however, to operate magnetrons in the (n = 0)-mode
of the second group. This mode has the advantage of being well sepa-
rated from other modes and of being nondegenerate.

2-8. End-space Effects.—Up to this point the problem of the end
spaces has been completely ignored. In order to discuss their effects,
it is necessary to abandon the circuit analogies of the preceding sections
and reconsider the problem from the point of view of field theory.

The simplest kind of end-space problem, and one that ¢ .. be solved
exactly, is that of the closed-end anode block illustrated in Fig. 2-18.
By considering the entire anode
block as a section of waveguide of  End plate Sige resonator
unusual cross section, the problem  cathode
can be reduced to that of a section
of waveguide with shorting plates
at both ends. From this point of
view the magnetron modes pre-
viously discussed are transverse N
electric or T E-modes because the
clectric field has no axial com-
ponent. The resonances of the
cavity will occur when the guide is
an integral number of half wave-
lengths long, the wavelength being I
measured along the guide; that is, N
the resonance occurs when \,, =
2h/p, where p 1s an integer greater g End plate
than or equal to 1. The guide Fic. 2-18—Cutaway view of closed-end
wavelength )\,, depends on the resonant system.
frequency and the mode according to the well-known formula

E— 7X —

)\ 2
\/1 B (xm)
where \.. is the cutoff wavelength for the mode in question. Thus the
problem of finding the resonant frequencies has been reduced to the
problem of finding the cutoff wavelengths for the anode block considered
as a section of waveguide. It will be shown that the resonances found
in the preceding section correspond to these cutoff wavelengths.

The cutoff wavelengths of a TE-mode in a waveguide are determined
by the condition that the equation

)\an = y (38)

2m\?
VH, + ()\—> H, =0 (39)
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have a continuous solution with continuous first derivatives and that it
satisfy the boundary condition that the normal derivative of H,, 3dH,/an,
be zero at the boundary. This condition is equivalent to the require-
ment that the tangential electric field be zero at the boundaries. The
fields and their associated wavelengths found in the preceding section
satisfy the differential Eq. (39) and the above boundary condition.
Furthermore, the fields are continuous except perhaps at a junction
between regions of different geometry.

The situation at a junction must be considered in detail. It simplifies
matters to consider the specific case of the junction between a rectangular
side resonator and the interaction space shown in Fig. 2-19. The fields
in the two regions have been expressed in two different coordinate
systems. It is assumed that the arc of the circle p = rq and cie straight

F1a. 2:19.—Junction of a side resonator with the interaction space.

line z = 0 coincide across the resonator opening. As a corollary it
follows that the y direction coincides with the ¢ direction and the z
direction with the p direction. If the voltage is considered to be con-
tinuous at the junction, it follows that E, is equal to E, at the junction
because both are constant across the resonator opening, and the voltage
is given by the electric fields E, or E, times the opening width. In
Sec. 27 it was asserted that resonance occurs when the admittances at a
junction match. Thus taking the voltage as continuous also ensures
that the quantity [E}H.dy is continuous at the junction. Because
E} is constant, [H.dy and, therefore, average values of the magnetic
fields match at the junction. The magnetic field as given by the side-
resonator function is constant along the junction, whereas that given
by the interaction-space function H,.(a,¢) is not. Therefore, the mag-
netic field cannot be continuous at the junction. If, however, the gap
is narrow, H.(a,¢) will vary only a small amount and the discontinuity
in the magnetic field will be small because the average values match.
The electric-field component that is normal to the boundary, E, or E,,
is also discontinuous across the junction boundary, for E. is zero while
E, is not. However, E, is small except very near the edges, where it
becomes infinite. Therefore the fields are approximately continuous
for a narrow opening.!

1 The discontinuity, of course, is due to the fact that the tangential electric field
has been assumed to be constant along the junction boundary. Had the correct
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Thus, the resonant wavelengths computed in See. 2-7 should cor-
respond closely to the required cutoff wavelengths, and from them the
resonances of the closed-end anode can be computed. The experi-
mental agreement is good; even with N@ = 0.5 and 2rr./A = 1.5 the
results are dependable within approximately 1 per cent.

The accuracy of the admittance matching method used in this
chapter can be improved by finding a better approximation for the
tangential electric field at the bounding surfaces. One can set up an
integral equation for this field, and it should be possible to find approxi-
mate solutions. Such methods have been very useful in the treatment
of problems involving waveguide junctions and obstacles in waveguides.!
No attempt has yet been made, however, to apply these methods to the
magnetron problem. As a matter of fact, the error involved in the treat-
ment (or nontreatment) of the end spaces is such as to make more accurate
values of the cutoff wavelengths of little use for most purposes.

There are other methods, based on field theory alone, for computing
the cutoff wavelengths. One of these is the ‘‘relaxation method,”?
which is essentially a method of successive approximations. While
in principle one can achieve any desired degree of accuracy using this
method, one finds in practice that a considerably longer computation
time is required to achieve accuracy comparable to that achieved by
the method outlined here, particularly when a large number of modes
is involved. On the other hand the method of this chapter is limited to
cases in which the resonant system can be split into regions of simple
geometry, for which analytic solutions are possible. For resonant
systems involving more complicated resonator shapes or resonant systems
in which, for example, the anode segments are not all equidistant from
the center of the magnetron, the relaxation method is very useful.

The problem discussed above is idealized; any magnetron must have
its cathode insulated from its anode. However, an anode block with
closed-end resonators that has an open interaction space approximates
closely the anode block just discussed. All wavelengths, however, are
somewhat higher than computed; for the large n-modes the change is
about 1 to 2 per cent, but the (n = 1)-mode may be affected a great
deal—as much as 25 per cent or more. It must also be remembered that
the cathode is not usually a simple cylinder as assumed but may have
end shields or other irregularities. This effect is usually small and can
be accurately estimated after some experience.

distribution, which is unknown, been chosen for this field component, it would have
been possible to find a frequency value for which all of the components would be
continuous.

! See Vol. 10 of the Radiation Laboratory Series.

2D. N. de G. Allen, L. Fox, H. Motz, and R. V. Southwell, Phil. Trans. Roy. Soc.,
Series C4, I, 85 (1942); H. Ashcroft and C. Hurst, CVD Report WR-1558.
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The usual end-space problem is much more complicated than the
one just discussed. Most magnetrons with symmetric unstrapped
resonant systems have an open-end anode block with an empty region
on either end. In previous sections it was assumed that end conditions
were such that there was no axial variation of the fields in the side
resonators or the interaction space. For many open-end anode blocks
this is a fairly good approximation; when anodes are longer than 0.4
and have end-spaces deeper than 0.2X, the modes for which n is greater
than 1 agree within 2 or 3 per cent with the computed values. The
experimental values are lower than the computed values. The (n = 1)-
mode is often depressed by more than 10 per cent. The general character
of the spectrum and the relative separations, except for the (n = 1)-mode,
are accurately given.

In the case of magnetrons operating at wavelengths greater than
10 cm, both the anode-block height and end-space height are usually
small compared with the wavelength. (The anode height is usually
less than $\y, and the end-space height less than ¥5Ay.) Under these

2 2

conditions the observed spectrum is quite different {from that computed
in the preceding sections. One finds the order of modes reversed; that
is, the wavelengths increase rather than decrease as the mode number
increases.!

The most extensive discussion of this effect appears in a report by J. C.
Slater,? which contains plots of the observed dependence of wavelength
upon the heights of the block and the end spaces for an eight-resonator
hole-and-slot anode block. One finds that the end-space height below
which the order of modes is reversed decreases as the anode height is
increased. From the point of view of application it is significant to note

that the separation between the (N/2)- and (g — 1>-modes is small

regardless of the order.

It is evident that an adequate theoretical treatment of the end spaces
applicable to short end spaces and small anode height would be desirable.
Flux plotting methods® have been developed which permit an accurate

1 A good qualitative picture of the phenomena can be obtained by assuming the
capacitances ¢ in Fig. 2-5 shunted by inductances [ and by assuming a particular
dependence of ¢/C and L/I upon the height of the block and the end spaces. The
required dependence upon the height of the block is, however, quite different from
what one would expect physically. For further details see J. W. Dungey and
R. Latham, “The Frequencies of the Resonant Modes of Magnetrons,” CVD Report
WR-1223, July 14, 1944.

2J. C. Slater, “Resonant Modes of the Magnetron,” RL Report No. 43-9,
Aug. 31, 1942, pp. 15-20.

3 P. D. Crout, “The Determination of Fields Satisfying Laplace’s, Poisson’s, and
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treatment of the end spaces. Calculations have been carried through
for an unstrapped anode block with end spaces and anode height such
that the modes occur in reverse order, and very good agreement with
experiment has been obtained. In addition, both the previously men-
tioned relaxation method and the admittance matching method used in
this chapter might in principle be extended to include the end spaces.
The computations, however, become very laborious, and no such calcu-
lations have been carried through with satisfactory accuracy.

A

i
—— i

block Vo
Y10
- & = T e —
End
space *

N

(@)

FiG. 2:20.—(a) Longitudinal cross section of a magnetron anode block showing the
charge distribution and the direction of the impending current flow for a typical end-space
resonance; (b) equivalent circuit for the end-space resonance.

As pointed out in Sec. 2-1, the assumptions made prevent the resultant
spectrum from being complete. There are an infinity of resonances that
do not even approximately satisfy the assumed conditions. Ordinarily
these are short-wavelength resonances that do not interfere with opera-
tion and are rarely observed. There are, however, two types of reson-
ances that may be troublesome. The first group is usually referred to
as the ‘“‘n’ resonances.” These are similar in character to the ordinary
magnetron resonances, except that there is axial variation of the fields.
In fact, these resonances are characterized by an electric-field node at
the median plane. The wavelengths of these resonances are of the same

Associated Equations by Flux Plotting,”” RL Report No. 1047, Jan. 23, 1946,

P. D. Crout, “A Flux Plotting Method for Obtaining Fields Satisfying Max-
well’s Equations, with Applications to the Magnetron,” RL Report No. 1048, Jan. 186,
1946.

F. E. Bothwell and P. D. C'rout, ‘“A Method for Calculating Magnetron Resonant
Frequencies and Modes,” RL Report No. 1039, Feb. 8, 1946.
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order of magnitude as the first group of ordinary resonances only when
the anode is abnormally long. The second group is referred to as ‘‘end-
space resonances.” These are characterized by strong fields in the end
spaces and are most likely to be seen when the volume of the end spaces
is large.! The field distribution, together with an approximate equiva-
lent circuit of a typical end-space resonance, is shown in Fig. 2-20.

2:9. The Interaction Field.—The equations for the fields in the inter-
action space have been derived in Sec. 2:6. These are

B NOE sin v0\ Z/ (kp)
¢ T ~6 ) Z! (kr.,) %

It

5 — _ d NOE sin v\ Zy(kp) ,
N - "N 36 ) ZGra) O )y =n+mN (36
and
H = — €0 NGE' sin y6 (I\p)
=~ o v6 ) Zikra) ¢

m= — «

The special case n = N/2 (wherein N must be an even number) will
be discussed first. For this case the fields reduce to

_ 2NGE sin v0\ Z’(kp)
B == 2( 76 )Z;Um.) €08 4,

m=

2N6E in v8\ Z,(k 1
0

me

_ ;e 2N6E sin v8\ Z,(kp)
H. = J\/;o ™ 2 ( ~0 )Z’(kra) €08 9.
m=0

These fields represent standing waves rather than rotating waves, a
consequence of the fact that the (n = N/2)-mode is nondegenerate.
Furthermore, there is a 90° phase difference between the electric and
magnetic fields, as there always is in a standing-wave resonance. A
qualitative picture of the electric field distribution is shown in Fig. 2-21.

At the electron velocities in the magnetron (usually less than one-
tenth the velocity of light) the force due to the oscillating magnetic
field is much less than that due to the electric field. Therefore a detailed
discussion of the magnetic field is unnecessary. It is evident that the

and

t Certain of the end-space resonances can also be regarded as n resonances.
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electric field consists of a sum of harmonic components the relative
amplitudes of which depend upon p through the functions.

Z:(kp)
Zoy(krs)

for Ey4

and

Y Z»,(kp)
ko ZGry o e

For krs < v these functions can be approximated by

NEON
(—) L“(g‘:)h_
NRON
2 -G

respectively. These functions (except E, for ¥ = 1) all decrease as p
approaches r;, and the rate of decrease increases rapidly with v. Thus,
as p approaches ., the lower-order

components become more promi-

nent. The extent of the effect

depends upon r./r,, becoming less

pronounced as r,/rq approaches 7~ /
one. However, at the values of

re/ra ordinarily used, the lowest

component of the N/2-mode is the

predominant one at the cathode,

and the angular dependence near

the cathode is given very nearly Fio. 2:21.—Distribution of electric field in
by cos (N/Z)d) In a discussion of the interaction space for the m-mode.
the interaction between the field and the electrons (see Chap. 6), the
analysis of the field into harmonic components is very useful because it is
usually possible to ignore all but one of the components.

and

The (n = 0)-modes share with the (n = g)-modes the property of
nondegeneracy.

The Degenerate Modes.—All other modes of the unstrapped resonant
system have a degeneracy of the second order; that is, there is always

a pair of linearly independent fields having the same resonant frequency.
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In one of these the fundamental component [(m = 0)-component]
rotates clockwise, whereas in the other it rotates counterclockwise.!
The harmonic components all appear as waves that rotate at different
angular velocities; that is, the velocity of rotation is proportional to
1/v, and thus waves of negative vy rotate in a direction opposite to those
of positive v. It is worth noting that the harmonic of the lowest ¥
(excluding the fundamental), given by m = —1, rotates in a direction
opposite to that of the fundamental. The remarks that were made
concerning the comparative rates of decrease of the harmonics with p
for the nondegenerate modes apply here also. Ordinarily, however, the
various harmonics are not integral multiples of the fundamental.

Degeneracy leads to certain practical difficulties in magnetron
design. It is never possible to make a magnetron perfectly symmetric.
The lack of symmetry tends to split the degenerate modes into two
nondegenerate modes with slightly differing resonant frequencies.
Ordinarily, both components are excited, but the relative degree of
excitation depends upon the nature of the splitting and can be expected
to vary considerably from tube to tube. This splitting leads to a certain
lack of uniformity in tubes operating in degenerate modes.

2:10. Applications and Limitations.—It is evident from the preceding
discussion that the unstrapped system has several resonant modes
with which the electrons can couple (in the manner described in Chap. 1).
The same is true of the other systems to be described later. Whether
or not a magnetron can operate in a specific mode over a wide range of
voltages, currents, and magnetic fields is determined for the most part
by the wavelength and the field configuration of all the other modes
relative to that specific one.? The symmetric unstrapped resonant
system is satisfactory only for low values of N, because its modes crowd
together for high values of n» and N. It will be seen later that this effect
restricts their application to comparatively long wavelengths.

The development of the unstrapped resonant system was abandoned
when the strapped and rising-sun systems were discovered. Conse-
quently, no extended attempt has been made to design the best possible
unstrapped magnetron or to find what is the largest possible N that can
be used. - The largest N that has been used with full success® is 6. This

1 There is a certain degree of arbitrariness with regard to which pair of fields is
taken as fundamental. Thus it is possible to form other linearly independent pairs
by taking linear combinations of the pair chosen above.

2 The various factors that affect mode selection are discussed in Chap. 8.

3 Jt is possible to increase the separation between the x-mode and the (% - 1)—

mode by bringing a ring very close to the ends of the anode segments. Successful
experimental magnetrons with N = 8 have been constructed by making use of such
a ring.
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2
Me/sec band at an efficiency of 35 to 40 per cent. Thus, at a pulse
current of 10 amp and 12,500 volts, the tube will produce 50-kw pulse
power.

Another example of a v-mode unstrapped magnetron is the original
British 10-cm tube. It has eight resonators, and the separation between
the m-mode and the 3-mode is only 1 per cent. The maximum efficiency
varies from 20 to 30 per cent so that at a pulse input of 15 amp and 12,000

six-resonator magnetron® oscillates in the w-mode (n = ]j) in the 700-
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Fia. 2:22.—F(ka, b/a) in radians plotted as a function of ka for b/a equal to 1.15 to 4.0.

volts an output of 45 kw might be obtained. At currents below 10 amp
the tube oscillates in the 3-mode, and in general performance is erratic
from tube to tube.

In both of the magnetrons described above, the anode length and
end spaces are so short that the modes appear in reverse order (Sec.
2-8)—the m-mode is the longest-wavelength mode.

2-11. The Computation of Admittances.—In the various admittance
formulas derived in previous sections, the dependence of admittance
upon frequency and certain of the geometric parameters is contained in
some rather complicated expressions involving Bessel and Neuman

t The 700 A (B, C, D) series.
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functions. Tables, plots, and approximation formulas that are useful
for the computation of these admittances appear below.

The Annular Sector Resonator—The admittance of wie annular
sector shown in Fig. 2-11 is given by

o+ [eo h Jo(ka)Ni(kb) — J1(kb)No(ka)
T I N uova J1(ka)N1(kb) — J1(kb)N1(ka)

The functions

b\ . Jo(ka)Na(kb) — Jy(kb)No(ka)
F (‘“’ a) = T O (k@) N1 (kb) = J1(kb)N1(ka)

are plotted in Figs. 2:22 and 2-23 as a function of ka for various values
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Fia. 2:23.—F(ka, b/a) in radians plotted as a function of ka for b/a equal to 4 to 10.

of b/a. 'The function F(ka, b/a), rather than cot F, has been plotted in
order to facilitate interpolation between the given values of b/a. The
succession of poles in cot F would make interpolation between curves
very difficult.

The Cylindrical Resonator.—The admittance of the cylindrical
resonator shown in Fig. 2-10 is given by
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For ka <« 1 (which it usually is) one can take

Jotka) _ 2 ka5
Tk~ " ka T T o6 k9
Jo(ka) _ ka (ka)?
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yielding

s = &[40 3 () v o
sin py 1
+2( )w@fﬂ

which gives the frequency dependence comparatively simply. The
series

2, (575
A 22 P

pm

converges rather slowly for small values of y. One can show, however,
that

sin py\*1 _ 3 VAT A
E(W)i'i In2¢ + 35+ 5700 T
p=1

which converges quite rapidly for small values of ¢ (including the usual
range of values for ). The series

2 (sin 7)\&)2 1
~, 1% pip+ 1)

converges quite rapidly. Furthermore, one can usually omit the terms
in (ka)3.

For larger values of ka one can correct the above formula by using
the exact values for [J,(ka)]/[J3(ka)] for the low values of p and the
series approximations for the larger values (larger values means those
for which ke < p).




TaBLE 2:2.—VALUEs OF [Ja(kra)]/[J] (kra)]

08

kra nw=0 n =1 n=2 n=3 n=4 n=35 n =26 n=7 n=8 n=29

0.00 ® 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 0.00000 0.00000 | 0.00000 0.00000
0.04 | —49.9899 0.04002 | 0.02000 | 0.01333 0.01000 | 0.00800 0.00666 0.00571 0.00500 0.00444
0.08 { —24.9799 0.08013 0.04002 | 0.02667 0.02000 0.01600 0.01333 0.01142 0.01000 0.00889
0.12 | —16.6367 0.12043 0.06007 | 0.04002 | 0.03001 0.02401 0.02000 0.01714 | 0.01500 0.01333
0.16 | —12.4599 0.16103 0.08017 | 0.05339 0.04003 0.03201 0.02667 0.02286 0.02000 0.01778
0.20 | — 9.9500 0.20202 | 0.10033 | 0.06678 | 0.05005 | 0.04027 0.03335 0.02858 | 0.02501 0.02223
0.24 | — 8.27304 0.24352 0.12058 | 0.08019 0.06002 0.04805 0.04003 0.03430 0.03001 0.02668
0.28 | — 7.07265 0.28562 0.14092 | 0.09364 0.07014 0.05607 0.04670 0.04002 0.03502 0.03113
0.32 | — 6.16968 0.32844 0.16138 | 0 10712 0.08021 0.06411 0.05340 0.04575 | 0.04003 0.03558
0.36 | — 5.46508 0.37212 | 0.18197 | 0.12065 0.09029 | 0.07216 0.06009 0.05148 | 0.04504 0.04003
0.40 | — 4.89934 0.41678 0.20271 | 0.13423 0.10040 0.08021 0.06679 0.05722 0.050056 0.04449
0.44 | — 4.43457 0.46257 0.22362 | 0.14786 0.11054 0.08829 0.07350 0.06293 0.05507 0.04894
0.48 | — 4.04550 0.50964 0.24472 | 0.16156 0.12070 0.09637 0.08022 0.06870 0.06010 0.05339
0.52 | — 3.71467 0.55816 0.26603 | 0.17532 0.13089 0.10447 0.08694 0.07446 0.06512 0.05787
0.56 | — 3.42957 0.60833 0.28756 | 0.18915 0.14111 0.11259 0.09368 0.08022 0.07015 0.06234
0.60 | — 3.18103 0.66034 0.30935 | 0.20306 0.15137 | 0.12073 0.10043 0.0859) | 0.07519 0.06681
0.64 | — 2.96220 0.71444 0.33141 | 0.21706 0.16166 | 0.12888 0.10718 0.09176 | 0.08023 0.07128
0.68 | — 2.76780 0.77088 | 0.35377 | 0.23115 0.17200 | 0.13706 0.11396 0.09753 | 0.08527 0.07575
0.72 | — 2.59376 0.82996 0.37644 | 0.24533 0.18237 0.14526 0.12075 0.10333 0.09033 0.08023
0.76 | — 2.43684 0.89202 0.39946 | 0.25963 0.19280 0.15348 0.12754 0.10912 0.09538 0.08472
0.80 | — 2.20444 0.95745 0.42286 | 0.27403 0.20327 0.16173 0.13436 0.11494 0.10045 0.08920
0.84 | — 2.16449 1.02668 0.44666 | 0.28856 0.21379 0.17001 0.14119 0.12075 0.10552 0.09370
0.88 | — 2.04527 1.10023 | 0.47089 | 0.30322 0.22437 | 0.17831 0.14803 0.12658 | 0.11059 0.09820
0.92 | — 1.93535 1.17870 0.49559 | 0.31800 0.23501 0.18665 0.15490 0.13242 0.11568 0.10271
0.06 | — 1.83355 1.26281 0.52079 | 0.33293 0.24570 0.19501 0.16178 0.13827 0.12077 0.10722
1.00 | — 1.73889 1.35339 0.54652 | 0.34802 0.25647 0.20341 0.16868 0.14414 0.12588 0.11173
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krq n =20 n=1 n=2 n =3 n =4 n=>5 n==6 n=7 n=8 n=29

1.04 1.65051 1.45144 0.57283 | 0.36326 0.26729 0.21184 0.17560 0.15001 0.13099 0.11626
1.08 1.56769 1.55820 0.59977 | 0.37868 0.27819 0.22031 0.18255 0.15590 0.13611 0.12078
1,12 1.48983 1.67512 0.62737 | 0.39427 0.28916 0.22882 0.18951 0.16181 0.14123 0.12532
1.16 1.41638 1.80405 0.65568 | 0.41006 0.30021 0.23737 0.19650 0.16772 0.14637 0.12986
1.20 1.34687 1.94727 0.68476 | 0.42604 0.31134 0.24595 0.20351 0.17366 0.15152 0.13441
1.24 1.28092 2.10764 0.71466 | 0.44223 0.32256 0.25458 0.21054 0.17961 0.15668 0.13897
1.28 1.21814 2.28889 0.74545 | 0.45864 0.33387 0.26326 0.21761 0.18557 0.16185 0.14353
1.32 1.15824 2.49585 0.77720 | 0.47530 0.34526 0.27198 0-.22470 0.19156 0.16703 0.14811
1.36 1.10093 2.73495 0.80997 | 0.49217 0.35676 0.28075 0.23181 0.19755 0.17222 0.15269
1.40 1.04596 3.01501 0.84383 | 0.50933 0.36835 0.28957 0.23896 0.20358 0.17743 0.15728
1.44 0.99311 3.34828 0.87892 | 0.52676 0.38005 0.29844 0.24613 0.20961 0.18265 0.16187
1.48 0.94217 3.75249 0.91531 | 0.54445 0.39186 0.30737 0.25333 0.21566 0.18788 0.16648
1.52 0.89296 4 25414 0.95306 | 0.56245 0.40379 0.31635 0.26057 0.22174 0.19312 0.17110
1.56 0.84532 4.89489 0.99236 | 0.58078 0.41583 0.32539 0.26785 0.22783 0.19838 0.17572
1.60 0.79910 5.74391 1.03330 | 0.59944 0.42800 0.33449 0.27514 0.23396 0.20365 0.18036
1.64 0.75415 6.92565 1.07602 | 0.61845 0.44030 0.34366 0.28249 0.24009 0.20893 0.18500
1.68 0.71034 8.68769 1.12072 | 0.63783 0.45273 0.35289 0.28987 0.24625 0.21423 0.18966
1.72 0.66757 11.6048 1.16748 | 0.65761 0.46530 0.36218 0.29727 0.25244 0.21955 0.19433
1.76 0.62571 17.3841 1.21670 | 0.67778 0.47802 0.37155 0.30473 0.25864 0.22487 0.19900
1.80 0.58465 34.3675 1.26842 | 0.69838 0.49089 0.38098 0.31222 0.26488 0.23023 0.20369
1.84 0.54431 | 1199.48 1.32294 { 0.71946 0.50392 0.39049 0.31975 0.27113 0.23559 0.20839
1.88 0.50459 | —36.5922 1.38057 | 0.74101 0.51711 0.40008 0.32733 0.27741 0.24097 0.21311
1.92 0.46539 | —18.0348 1.44175 | 0.76306 0.53047 0.40975 0.33495 0.28373 0.24637 0.21783
1.96 0.42662 | —11.9643 1.50674 | 0.78566 0.54402 0.41950 0.34261 0.29006 0.25179 0.22257
2.00 ! 0.38821 8.9453 1.57590 | 0.80878 | 0.55775 0.42933 0.35032 0.29644 0.25722 0.22732
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The Interaction Space.—The admittance is given by

. [e NR sin v0\* Z,(kra) _ . \/?0 Nh
Yo = J\/:p:oz‘rrr,, E ( vé ) Z! (krs) =J ;)2‘”‘“ Ko (8kra),

where v = n + mN. For kro < 4 one can use

Z!(kre) _ kra (kra)?

= %1 \.2I'yl .
DA B IR T (Y
where ¢ = r./7a.
Since k7, is not always less than n, one uses for K(8,ka)

i ’ N2 2 2141
K(6.kr,) = (5210 Z.(kra) sin v6\' 1 + ¢
( VKT ) ( 7o Z::—(qu) + kTa 70 ——|7|

3 " [sin v6\’ 1
+ (k) 2 ( 8 ) 27 (7 + 1

m=— o

where the symbol Z’ indicates omission of the term for which m = 0.
For ¢ = 0, [Z.(kra)]/[Z5(kra)] = [Jo(kra)l/[Jn(krs)]. Values for these,
functions for n = 0 through 9 appear in Table 2:2. For valuesof n = 2,
the approximation Z,./Z!, = (J./J.)(1 + ¢**) is often satisfactory.




CHAPTER 3
THE RISING-SUN SYSTEM

By N. KroLL

The discussion of the unstrapped system has shown that a desirable
resonant system would be one in which the N/2-mode is well separated
from the neighboring modes and, further,
remains well separated for values of N sub-
stantially larger than those usable in un-
strapped systems. Two systems are
commonly used to accomplish this objective.
One is the rising-sun system in which alter-
nate resonators are alike but adjacent
resonators are not alike; the other is the
strapped system,! discussed in Chap. 4.
Two examples of the rising-sun structure are
shown in Fig. 3-1. The design of Fig. 3-1a
is obviously suggestive of the rather pictur-
esque term by which this type of magnetron
is known.

3-1. The Spectrum.—The electromag-
netic-field problem for the rising-sun system
can be reduced to a circuit problem by pre-
cisely the same means that were used for the
unstrapped system (Sec. 2:1). That is, the
magnetron can be represented by the circuit
in Fig. 3-2, where the interaction space is
represented by a network of N pairs of ter-
minals and the resonators by admittances

®

. . . . Fi1g. 3:-1.—Two examples of
having a single pair of terminals. The rising-sun resonant systems: (a)

assumptions leading to this representation vane type; (b) vane type with

) . modified large resonators.
are the same as those discussed in Sec. 2-1

and lead to the same restrictions upon the solutions.
In order to find the resonant frequencies, it will be necessary, as
before, to investigate the circuit properties of the various elements.
1 Arrangements of unlike resonators differing from that of the rising-sun system
have been given some theoretical consideration. None of these has appeared to be

promising, and none seems to offer any advantages over the rising-sun structure.
83




84 THE RISING-SUN SYSTEM [SEc. 3.1

These properties have already been fully investigated for the resonators
and can be summarized by the functions Y,, and ¥,,. These functions
are the admittances of the even- and odd-numbered resonators respec-
tively (numbered as in Fig. 3-2) and are functions of the frequency.
Formulas for computing these admittances for different resonator shapes
are derived in Sec. 2'5.

On the other hand, the properties of the interaction space were not
investigated fully enough to deal with the problem of this chapter. In
Chap. 2, admittances for the unstrapped system were computed with
the restriction that the electric field differed from gap to gap by only a
constant phase factor; this resulted in the condition of equal admittances
seen at any gap. This restriction is clearly invalid for the rising-sun

Y"l

@ Yr‘ (N-D

Fia. 3-2.—Clircuit representation of the rising-sun system.

system, inasmuch as the admittances seen at adjacent gaps must, in
general, be different. For the rising-sun system one assumes, as before,
that the tangential electric field along the dotted boundaries (Fig. 2:13)
is constant at each gap. Furthermore, one assumes that the field varies
from even-numbered gap to even-numbered gap as e@*/M9¢ and from
odd-numbered gap to odd-numbered gap also as e27"/¥¢ with no restric-
tion placed upon the ratio of the field at an even-numbered gap to that
at an odd-numbered gap.! Thus the electric field at even-numbered
gaps can be represented by E®e®*imM4 gand at odd-numbered gaps by
E@e®nmNa wwhere the ratio E¢/E is arbitrary and may be complex.
The required admittances can be readily computed by an application
of the principle of superposition to previously obtained results. The field
distribution described in the above paragraph can be obtained by super-
posing two “‘symmetric’’ distributions for which the tangential electric field

1 As in Chap. 2, ¢ is the gap number and has values of 0 to N — 1, and n is an
integer.
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; .
at the gth gap is given by Ee/(**»¥)¢ gnd E’e][h('l 2 )/N]q respectively.
The electromagnetic fields associated with these distributions have been
computed in Sec. 2:6 ([Eq. (2-36)]. A superposition of these fields gives

. N
rise to the distribution Ee/rvae 4 E’e’[zf("_f)/N]q which is equal
to [E + (—1)¢E'Je?™«v~. It is evident that the field varies properly
from even-numbered gap to even-numbered gap and from odd-numbered
gap to odd-numbered gap. Thus £ = E + E'and E©® = E — E’;and
inasmuch as E’/FE is arbitrary, so is E®/E©,

The magnetic field at the various gaps will be given by

H.(ra, ¢) = H(ra, ¢) + H'(ra, ¢),

where H(r,, ¢) 1s the magnetic-field distribution associated with

(N
Ee@win®e and H'(r., ¢) is that associated with E’e[m(ﬂ_f)/N]q.
According to the treatment following Eq. (2:36), Sec. 2-6, the admit-
tance seen at the gth gap is given by

rah /(‘2”“”““ Ey(ra, $)H.(re, $)dé

Y@ = 21rq/1\(rz)>;jN)+g :
[Tu /(Z”Q/N)-ﬂ Ey(ra, ¢)d¢]
h Sy Helrar 9148
T 4r 02 (E 4 (—1)E)errmmd (1)
since E, = (E + (—1)2E")eCmmNMe over the range of integration.

According to Eq. 236, H(r,, ¢) = H (r.,, ¢ — Z%) e(?rin/Ma gnd

H'(re, ¢) = H' (Ta, ¢ — 22—‘:#) e[QWJi(n_é!)/N]q

= (_1)0]{’ (Ta, ¢ — g}%) e(2rin/N) g,

Thus, takingy = <¢> - ?X—;])v Eq. (1) reduces to
ok . ( [ Hra 9)dv
YO = e TF E /B (=1 E
]
’ H,(Tﬂy lﬁ)d\l/
+ (—1)“% L‘LE/—> (2

The admittances Y, computed in Sec. 26 can be written as

wo [ He Wdv

Y. = 4r,6? E

@)
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Similarly,

o [ H e )Y
Y =Y = )
;—v—n) (n—g]) 47‘“02 E (4)

Thus the expression for Y reduces to

R G

YO = 1+ R (g even) (5a)
and
Yo RY(x_
Yo = —5—2—~  (godd), (5b)

where R = E'/E. Therefore the admittances depend upon R as well
as upon the frequency.

For resonance to occur it is necessary that the admittances match at
both odd- and even-resonator openings. This condition yields

Y.+ RY 5,
2 =
1+ R + er - 0, (6(1)
Y, — RY /n
I-R nT

which on eliminating R yield, after some manipulation,

Yot Y ¥_) Yot Y ¥
[——2« Y| —5 "+ 7,

2
Y-,,— Y E_") 2
= [_*%] - (D

The resonant frequency having been computed, K can be found from

Re_ YatY. _ Y.tV,

Y n y+ Y. Y(g_n) ¥y, ®

2

As in the case of the unstrapped system, the resonance equation
depends upon n. For the unstrapped system it was necessary to con-
sider only the values 0 to N /2 for n, as replacing n by —n or by (n -+ mN)
where m is any integer, left the resonance equation unchanged. For
the rising-sun system, however, the values 0 to N/4 [or (N — 2)/4,

whichever is an integer] are sufficient, as replacing n by (g — n): as

well as by (n + mN) or —n, leaves the resonance equation unchanged.
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Each equation has an infinite number of roots, although only the lower-
frequency roots are of practical interest (ordinarily only the first two are
of interest). While it would be simplest to use & mode-numbering
system analogous to that used for the unstrapped system, i.e., n, for
the (p + 1)-root of the frequency equation determined by =, this is not
the system in common use. It has become customary to regard any
magnetron resonant system having side resonators as a modification of the
unstrapped system. That is, one considers the system as having been
produced by a continuous perturbation of the unstrapped system. As
the unstrapped system is modified, the resonant frequencies and their
associated field distributions will also be modified and will change
continuously if the perturbation is effected continuously. This implies
that the modes of one system join continuously to the modes of the
other and thus that there is a 1-to-1 correspondence between the modes
of one system and the modes of the other. From this point of view it is
convenient to give corresponding modes the same number. Unfor-
tunately the correspondence is not unique (that is, it depends upon the
intermediate steps of the perturbation), so that it is necessary to specify
the way in which the perturbation is performed. For the rising-sun
system one considers the perturbation as having been made by a con-
tinuous alteration of the side resonators, other dimensions being held
fixed. In all practical cases this leads to the mode number n for the

,
first root of Eq. (7) and the mode number (% - n) for the second root.

The higher roots always correspond to the higher-order n- or (];7 - n)-

modes, with the particular correspondence depending upon the specific
case.

Equation (7) contains the unstrapped system as a special case.
For, setting Y, , = Y,, = ¥, gives

Y.+ Y AL,,) . V.- Y ﬁ’—n) .

NN VR SRS o D (N ¢k
2 ’ 2

which yields the two equations

Y.+ Y. =0 and Y,+Yiv_)=0. 9
2 n

These are, of course, the previously derived equations for the n- and

(g - n)—modes of the unstrapped system.
Although Eq. (7) appears to be complicated, it is subject to a simple

physical interpretation. In order to illustrate this interpretation the
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following specific example will be used. An 18-resonator anode block
similar to that shown in Fig. 2:17 will be used; in this all dimensions
are held fixed except the lengths of alternate resonators d., which are
allowed to increase. In Fig. 3-3 the resultant resonant frequencies of

35 the modes 1 to 9 are plotted as a
function of the ratio of large to
small resonator depths (r, =d./d,).
/. Following thbe mode-numbering
1 convention discussed above, the
. 2 9-mode is found as the second root
/ of Eq. (7) withn = 0 (the first root
25 is the trivial w = 0); the 1- and 8-
modes are found as the first and
* 4 second roots of Eq. (7) withn = 1;
20 L and so forth for the other modes.

9t-mode)l—| It is evident that for sufficiently
>/ large values of ry, the (n = N/2)-
15 é

X

30 =

>|>

mode or the 9-mode becomes well
T 8 separated from its neig,_hbox:s, are-
A?%TA____ quirement for operation in this
o mode. Furthermore, the other

1 15, 20 25 m.oc%es appear to break into t.\\'o
2 distinet groups, each of which

1 -

F1a. 3:3.—Mode spectrum of a rising-sun bears a SUggeStlve resemblance to

system as a function of the ratio of large the first group of modes of an
resonator depth d: to small resonator depth - .
d1 held fixed. Ax, is the 7-mode wavelength unstrapped system hav ng nine

for d2/d1 = 1. Dimensions: di/Aro = 0.172; resonators. Table 3-1 shows the
da/Aro = 0.524; de = 0; 8 = 0.060 radians. modes of the rising-sun system for
ds:/d; = 2.1 compared with the modes of an unstrapped system having the
same dimensions as the rising-sun system except that in Case I the small

TaABLE 3-1.1—THE RESONANCES OF AN 18-RESONATOR RISING-sUN SysrTeM COMPARED
WIiTH THOsE OF Two NINE-RESONATOR UNSTRAPPED SYSTEMS

Case I Case TT
N/ = 0.987 A /s = 1.096
A/As = 0.9975 /A = 1.015
A/N; = 0.9994 A/ = 1.0034
/A = 0.9997 Ao /As = 1.0006

Ao/As = 0.8816

resonators have been filled with metal leaving nine large resonators and
in Case II the large resonators have been filled with metal leaving the

1The values of A. are the resonances of the rising-sun system of Fig. 3:3 at
dy/d, = 2.1. The )\:, are the resonances of the nine-resonator unstrapped system
formed by filling the small resonators with metal; the A, are those of the ninc-reso-
nator symmetric system formed by filling the large resonators with metal.



SEc. 3-1] THE SPECTRUM 89

nine small resonators. These results suggest that a rising-sun system of
N resonators can be interpreted as two symmetric N /2 resonator systems
coupled together. A careful examination of Eq. (7) will corroborate this
interpretation.
Consider first the expression [Y, + Y(g_n)]/z Substituting the
2

expression in Eq. 2-:37 yields
Y.+ Y, N )

5—n

2 ") _ . |eo Nk Z(kra) (sin v6\*
3 = I\ Irr, 2 ZGro\ o )0 (10

m=—

where v = n 4 m(N/2).

This expression, however, corresponds precisely to Y, for an interaction
space having precisely the same dimensions but N/2 openings instead
of N openings. Then

Y'n + Y N

()

~+Y,=0
2

is the equation for the resonant frequencies of an unstrapped system
formed by the N /2 resonators corresponding to one set of side resonators
with the other set of side resonators filled with metal. A similar state-
ment applies to the equation

Yot Yiew

O S
—— 2y, =0

Thus the resonance equation for the rising-sun anode block,

Y. +7Y 1!_") Y.+Y Jg_n) Y.—-Y zy_") 2
_— et 7 + le I:fz + er = —t 7

2 2
(11)

can be interpreted as a coupling equation for the corresponding modes
of the two unstrapped systems with the term [(¥Y. — Yy )/2]* deter-
g "

mining the strength of coupling. When this term is small, the coupling

is weak and the resonances of the two systems are shifted only a very

small amount. Except for the case n =0, [(Y, — Yy ﬂ)/2]2 is quite
¥

2
In the extreme case of n = N /4, the coupling term is identically zero and
the resonance associated with one set of resonators is completely inde-
pendent of the dimensions of the other set. Ordinarily (except for

small and becomes smaller as n and (E -~ n) become more nearly equal.
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n = 0), the coupling is quite weak,' although there is an important
exceptjon when the resonant frequencies of the two systems occur close
together. Then both bracketed terms are small over the same fre-
quency range, and the coupling term becomes important. This inter-
pretation of the rising-sun resonances will be further supported in
Sec. 3-2, where the field distribution will be examined.

Figure 3:3 shows the spectrum over the range of ratios in general
use; the two groups shown correspond to the first group of resonances
for both the large- and small-resonator systems. In the case shown,

.

14

—7 I
1. 0
0 1 1, /
2,
09 3, 4,
4 5 6
dZ
d—l =’l"l

F1a. 3-4.——Mode spectrum, for large values of r1, of the rising-sun system of Fig. 3-3.
The two groups shown correspond to the first group of the small-resonator system and the
second group of the large-resonator system.
the first group of resonances of the smaller-resonator unstrapped system
happens to occur at a much higher wavelength range than that of the
second group of resonances for the larger-resonator unstrapped system
(not shown in the figure). For very large ratios this is no longer the case.
Figure 3-4 shows the approximate behavior of the modes of the second
group of the large-resonator system in relation to the first group of the
small-resonator system, for »; greater than 3.

Although the preceding discussion was to a large extent in reference
to an N = 18 resonant system, the discussion can easily be generalized.
Thus, for a rising-sun system with N resonators and a ratio of resonator
depths that is not too close to 1, the resonances of the first group of the
spectrum can be divided into three subgroups. There is the set of modes
numbered 1, 2, - + - | (N — 2)/4 (or N/4). These correspond closely to

1 This remark applies mainly to the case of small d,/A:. As this quantity is
increased, the coupling becomes stronger for n > 0 and somewhat weaker for n = 0.
For values of d./Ar used in practice the coupling is always weak for n = 2 but may be
quite strong for n = 1.
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the 1, 2, - - -, (N — 2)/4 (or N/4) of the unstrapped system of N/2
resonators formed by filling the small resonators with metal. This set
is frequently referred to as the upper multiplet. Second, there is the
set of modes (the lower multiplet) numbered (N + 2)/4 or N /4, - - -,
(N/2) — 1. For moderate ratios of resonator sizes, these correspond
closely to the (N — 2)/4, (or N/4), - - - 2, 1, modes of the unstrapped
system of N/2 resonators formed by filling the large resonators with

metal. [Note that the order is reversed. Thus the (% — 1>-m0de

of the rising-sun system corresponds to the 1-mode of the unstrapped
system.] For very large ratios these modes correspond closely to the

;T —
(A 7 2) ) [or (g) ], -+ -, 2, 1, modes of the large-resonator system
1 1

(that is, the second group of resonances). This last correspondence
occurs when the second group of
resonances of the large-resonator 16 L
system happensto occur at alonger 1 /
wavelength than the first group of )/ \2 \3
resonances for the small-resonator 14
system. Third, there is the = or — S
N/2-mode, which occurs between \—4
the two subgroups mentioned
above. The =-mode corresponds
roughly to the 0,-mode of the large- 8
. \ 7 6 5
resonator system, but its wave- NN
length is as dependent upon the \
small-resonator dimensions as it | \ \
is upon the large-resonator 1 Y
3 3 1 08
dimensions. 005 010 015 020 025
As in the treatment of the un- Endspace height
strapped system, the precedin %o
th PP h i ti ’1 lp ted thg Fig. 3:5.—Typical example of the effect
eory has entuirely neglecte € of end-space height on the mode spectrum of
end spaces. The effects of the end a rising-sun tube. A, is the initial value
h imilarf h of the m-mode wavelength. Dimensions:
spaces are somewhat similarforthe 4 "= 0.27, h/ne = 0.31; r, = 1.75.
two cases, in that all wavelengths
turn out to be lower than the computed values. On the other hand, the
general character of the spectrum and order of the modes remain the same.
The reversal of order, mentioned for the unstrapped system, has never been
observed in rising-sun systems, although one might expect it to ocecur

N

12

>|>

9 (i-mode)

! The Qi-mode referred to above should not be confused with the 0i-mode in
Fig. 3-4, which is the 0-mode for the rising-sun system. The latter corresponds to
the 0;-mode of the small-resonator system for small ratios and to the 0,-mode of the
large-resonator system for large ratios.
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for very short anodes with very short end spaces. The magnitude of
the end-space effect depends upon the dimensions of the end space and
the relative sizes of the side resonators. Experimentally it has been
found that the 7-mode may be depressed from 2 to 8 per cent; the lower-
wavelength modes of the long-wavelength group are rarely depressed as
much as 5 per cent, while the highest-wavelength mode, the 1-mode,
may be depressed more than 20 per cent. The mode just below the

m-mode, the (9 — 1)—mode, is depressed about the same amount as the

2
m-mode, although the separation between the two is usually changed
somewhat. The other modes below the m-mode wavelength are depressed

about 2 per cent. Figure 3-5 shows a typical example of the effect of
end-space height on the mode spectrum.

3-2. The Interaction Field.—The tangential electric field at cach gap
was found in the last section to be given by

) N
E(eiCmum 4 Rej[z'("‘z’)q]/N},
This distribution was found by superposing the electromagnetic fields

) N
associated with Eej[z’r (n 2 )q]/N and the fields associated with
. N
rudl7 ()]
The various field components in the interaction space can then be found
by simply superposing the fields associated with the above distributions.
Thus

)

_ NoE sin y6\ Z,(kp)
w3 [(50) 2 e
sin Y0\ 7% (ko) ..
R( 7’0 > Z{?(kra) eiv'e ) (12(1)

_ _ i NeE sin 0 Z,(kp) i
o= 2 O 2 e

sin v'8\ Z. (kp) iy
) zamer

_; [ NOE { z [(sin 10\ Zy(ko) .,
so v0 ) Z(kr,)

M ﬁ')’/f Zy(kp) v 12
" J”( v'8 >/Z;'<kr.,> ¢ "]} (129
where y = n + mN and v/ = (n - %) + mN.

+R7’<

T
I
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It is now possible to see which modes are degenerate and which are
not. Substitution of —n does not change the resonant frequencies of
the modes. However, except for n = 0 or n = N/4, it does lead to a
field distribution that is linearly independent of the +n field.! These
modes then have a second-order degeneracy. When n = 0, no sign
change is possible (—n = +n), so that the w-mode is nondegenerate.
To consider the case n = N /4, it is necessary to know the value of R.
It can be shown that for the (n = N/4)-resonance associated with the
even-numbered resonators B = 1, and for the N/4-resonance associated
with the odd-numbered resonators & = —1. In either case, replacing n
by —n does not lead to a linearly independent field so that modes with
n = N/4 are also nondegenerate. This is readily understandable if one
observes what happens as the even- and odd-numbered resonators
become alike. It is evident that the two roots of Eq. (7) forn = N/4
are equal if Y,, = V,,. It is also evident that both roots must be called

2

to the fact that the N/4-mode has a second-order degeneracy in an
unstrapped system. When the unstrapped system is perturbed into the
rising-sun system, this N /4 doublet splits, with one resonance following
the ‘odd-numbered resonator system and the other following the even-
numbered resonator system. Thus, a rising-sun system in which N /4
is an integer has two N/4-resonances. These two nondegenerate modes
can be thought of as m-modes for the two unstrapped N/2-resonator
systems.

It is apparent from the above expressions that a more detailed study
of the fields requires further knowledge of K. It will be of interest to
study some limiting cases first.

Case 1.—Y, = Y,, = Y. Tere lq. (7) can be factored yielding

Y, + Y. =0,

N/4-modes because (N — n ) is also equal to N/4. This corresponds

which gives the n-mode frequencies, and

Y, + Y =0,
T QE_")

which gives the (% — n)-modo frequencies. Because
Y.+ Y.

it is elear that B = 0 for an n-mode, and the fields are identical with

N . .
I Replacing n by (n + m ‘;) does not lead to linearly independent fields.  [Note

that R becomes inverted when m ix odd (liq. 8).]
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those previously computed for an unstrapped system with N resonators
oscillating in the n-mode. The ratio of the voltage® across an odd-
numbered gap to that across the adjacent even-numbered gap in the
clockwise direction is [(1 — R)/(1 + R)]e*~, Thusif R = 0, the ratio
is e?/¥ which 1s appropriate to the n-mode of an unstrapped system
rotating counterclockwise.

For the <% — n)-mode R = «. In order to have finite fields one

must take RV finite and equal to ¥V’ with ¥V = 0. Then the fields are

identical with those previously computed for the (% — n)-mode.

For the voltage ratio here is
(1-F)
(1 4+ R)ermimn

(%)
— _eZm'n/N — e21rj/N 2

which is appropriate to the ]—;—— n)—mode of an unstrapped system

rotating clockwise.

Thus it can be seen that for K very near zero the voltages across odd
and even gaps are approximately equal in magnitude. The fields are
like those of a symmetric system with N resonators oscillating in the
n-mode, with a small amount of (%V - n)-mode mixed in. For R
very large, the voltages across odd and even gaps are also approximately
equal in magnitude. In this case the fields are like those of an unstrapped

system with N resonators oscillating in the (]g - n)-mode with a small

amount of n-mode mixed in.

Case 2—Y,,— «=. This is the case for which the odd-numbered
resonators are replaced by metal and the system reduces to an unstrapped
system with N/2-resonators. The resonance equation becomes

Yot Yy_
5 T Y, =0
and
Vot Yy
3 n
R Y.t 7n Yo - 2
R P C e
2 2
Yy —
L 2

Then [(1 — R)/(1 + R)]e*™¥ = 0, which is to be expected because the
odd-numbered gaps are no longer present. The fields are those previously

! Here V = 2r,0E, and V' = 2r,6E’; thus V'/V = E'/E = R.
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computed for the n-mode of an unstrapped system with N/2-resonators.
For example, £, can be written as

_ VoK sin v0Y) Z5(kp) g
o= 2 <w”>zz<kn)“’ (13

m=—

where vy = n + mN /2.

Thus if R is near 1, the field is very much like that of an unstrapped
system with N/2-resonators. The voltage across odd-numbered gaps
is very small compared with that across even-numbered gaps. As a rule
this means that the odd-numbered resonators are very weakly excited.

It can be shown similarly that

R approaches —1 as ¥, becomes 06
very large. Inthiscasethe voltage -t ———1 D NP S
across even-numbered gaps is 05 1 R
small compared with that across Tezh L]

04 E

odd-numbered gaps, and again the
field is similar to that of an un-
strapped system with N /2-reso- %,03 7

nators oscillating in the n-mode.!
It isevident that a good picture 02 /

of the modification of the interac-
tion field may be obtained by 0.1
studying the variation of R as the

h f th r even s 0
shape of t le odd o even set of h 15 20 25 0
resonators is changed. The be- @,
. i |
havior of R for the m-mode, e 3. R d‘f vion of i for ¢h
. f1G, 3-6.— — i t
although not typical of the usual ¢ a/no’('ieaifalsg_wzi_lg_n o i for the

behavior of R, is of fundamental
importance in magnetron operation and will be discussed first. For a
specific example consider the anode block used in Fig. 3-3 for which
—1/R, is plotted as a function of d-/d; in Fig. 3-6.  As would be expected
from the preceding discussion —1/R, is zero for d./d, = 1. It is appar-
ent that as d»/d; becomes large, — 1 /R, approaches asymptotically a value
that is less than 1. Infact, it can readily be shown that —1/R, is always
less than 1/[1 4+ (24.,/4.)] where A, is the total area of the small reso-
nators and 4. is the area of the interaction space; this is the value which
—1/R+ approaches in Fig. 3-6. In terms of voltages, this means that for
ds/d, = 1, the voltage across odd and even resonators is equal. As
1 The expressions for the field components obtained by setting B = —1 are
formally different from those previously derived because of an effective shift of the
polar axis through an angle 2r/N. That is, since the even-numbered resonators are
effectively absent, the polar axis goes between two resonators instead of through the
center of a resonator.
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ds/d; increases, the voltage across the large resonators becomes larger
than that across the small resonators, with the ratio approaching
A4,/(A. + A,) as d»/dy becomes large. The fact that the voltages across
the odd and even resonators are unequal implies that there is a net
voltage around the anode circumference, a fact that is evident from an
examination of F,, for

_ NoE| 1 Zj(kp) sin v'8\ 2% (kp) ,
B, = — [R, Zithry T2 v6 ) ZGkra) 570
m=1

1 (sin v8\ Z,(kp)
+ E('Tg*) Z.';(k?) cos vé | (14)

and it is thus clear that for —1/R, > 0, E; has a component that is inde-
pendent of ¢. Thus 7, ﬂfw E,d¢ is not zero. A better understanding

of the origin of this voltage can be had from an examination of the charge

(a) ®)

F16. 3-7.—Qualitative distribution of magnetic field and current with impending charge
distribution for (a) the w-mode of an N-resonator rising-sun system; (b)) the r~mode of an
N-resonator unstrapped system; and (¢) the O-mode of an N /2-resonator unstrapped
system. Magnetic lines into paper o e o ; magnetic lines out froin paper ¢ o o.

and current distribution. Figure 3-7a shows the distribution of charge,
current, and magnetic field in a rising-sun anode block. Whereas the
voltages at odd- and even-resonator openings are opposite in direction,
the magnetic fields are in the same direction. This would indicate that
the magnetic field in the interaction space is unidirectional or that there
is a net magnetic flux linking the anode circumference. This flux can
be thought of as inducing the net voltage around the anode circumference.
It is also apparent that the current across the anode segments is uni-
directional. Figure 3-7b and ¢ shows the charge and current distribution
for the r-mode in an N-resonator unstrapped system and the 0,-mode
in an (N /2)-resonator unstrapped system, The x-mode of the rising-sun
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system evidently bears a certain resemblance to each and may be regarded
as a perturbation of either.

As a measure of the distortion of the m-mode field in the rising-sun
system, it is customary to use the ratio of the (y = 0) component to the
(v = N/2)-component of E,. This ratio is given by

— Zi00) Zhalhr) Y 6
R(p) = . (15)

2Z}(kra) Z' s o(kp) Ry sin %’ 9

For rising-sun magnetrons in common use, this quantity is in the neigh-
borhood of 0.1 at p = r,. However, the N /2-component falls off much
more rapidly than the zero com-

: 10

.ponent. as p approaches r., gnd it -R, /_T_,_,——
is possible for R to exceed 1 in the P
vicinity of the cathode. 75 -

The behavior of R for modes /’(1
other than the mmode is quite -~I< - R,
different from that for the r-mode, 3,"%°
As a specific example, consider the T //
(n = 2)-mode and the (n = 7)-or 25
(%7 - 2>-mode for the anode block .
used in Fig. 3-3. In Fig. 3-8, — R, 1 15 20 25 30
and 1/R, are plotted as functions &
of do/d;. Although these quanti- Fia. 3-8.— —R: and 1/R1 as functions of

ties have the expected value of i{‘g'i/dl:j.éol' the rising-sun system used in
zero for da/d; = 1, they approach g
the value 1 quite rapidly, so that even for the rather moderate ratios used
in practice the voltage across one set of resonators is small compared
with that across the other set. In the case of the 2-mode the large
resonators are the strongly excited ones, while for the 7-mode it is the
small ones that are strongly excited.

R, differs from — R, in that it does not approach 1 asymptotically.
In fact, when the ratio ds/d: becomes so large that the lower-group
resonances become associated with the large resonators, R; changes
rapidly from 1 and begins to approach —1 asymptotically, which corre-
sponds to the fact that the large resonators have come to be the strongly
excited set. This behavior of R is typical of all modes except m-modes;
that is, for the upper group R behaves like R,, and for the lower group R
behaves like R;. Table 3-2 shows the values of R, and also the ratio
[Vil/|Vs| of the magnitudes of voltages across the large and small
resonators for ds/d; = 2.1.
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Further support for the interpretation of the rising-sun structure as
two unstrapped systems coupled together is given by the field distribu-
tions. The coupling is quite weak for all the non-m-modes except for

the <§ — 1)—mode and becomes increasingly weak as n or (g - n)
approaches N/4. For the values of di/d; used in practice and for the
modes 1 through (I%T — 2), an account of the spectrum and fields suffi-

ciently accurate for many purposes can easily be obtained by ignoring the

TaBLE 3-2.—VALUE oF R, anD aLso THE Rarro [V, !/|Vs| oF THE MAGNITUDES OF
THE YOLTAGES ACROsS THE LARGE AND SMALL REsonNaTORs roR dp/d; = 2.1

Vil
n R, Vsl
1 —0.807 9.34
2 —0.908 19.2
3 —0.955 43.5
4 —0.986 114.
9 —2.290 2.55
8 2.680 0.457
7 1.370 0.157
6 1.140 0.067
5 1.050 0.024

set of resonators that are weakly excited and using the formulas for an
unstrapped system of N/2-resonators. At the value of d»/d; and di/A\,
ordinarily used, the (%f — 1)—m0de retains a large measure of its %7 -1
character. The comparative excitation of the two sets of side resonators
is of the same order as that for the m-mode.

3-3. The Effect of the Mode Spectrum and Field Characteristics on
=m-mode Operation. The v = 0 Field Component.—The interaction field
of the =-mode in a rising-sun system differs from that of the =-mode in an
unstrapped system (see Chap. 2) or a strapped system (see Chap. 4)
in that the ¢-component of the electric field has a v = 0 field component.
A detailed account of the effect of this component upon magnetron
operation would require a discussion of magnetron electronics, a
portion of magnetron theory that is very complicated and at present is
incomplete. It will thus be possible to discuss the effects in a qualitative
way only.

The most important effect of the zero component consists of a reso-
nance phenomenon that occurs when AB lies between 12,000 and 13,000
gauss cm or 0.012 and 0.013 weber per meter. From both theory and
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experiment it would be expected that the electronic efficiency! at constant
current would be a monotonic increasing function of the magnetic field;
but in a rising-sun magnetron in the vicinity of AB = 12,000 gauss cm,
there is a pronounced efficiency dip as shown in Fig. 3-9. Both the depth
and breadth of this dip increase with increasing amounts of zero compo-
nent. This effect is very important for magnetrons designed to operate
below this dip (which at present includes all magnetrons for wave-
lengths less than 1.5 ¢cm) because the amount of zero component deter-
mines the maximum efficiency obtainable for these magnetrons. The
only magnetrons that have been
successfully operated well above
the dip have had only a small
amount of zero component present
(although enough to produce a
pronounced dip). The zero com-
ponent seemed to have very little
effect on the high-field operation of
these magnetrons, the electronic
efficiency being fully as high as
would be expected by comparison

8

1, in per cent

0.4 038 12 16 20 x104

with strapped tubes.

This effect of the zero com-
ponent has been explained in only
the most qualitative manner.
Ordinarily, the zero component

AB Gauss —cm

Fi1g. 3-9.—Approximate observed varia-
tion of electronic efficiency 7%. with AB.
a pure w-mode field (R(rs) = 0);
a r-mode field contaminated with the
zero component (R(re) = .1).

interacts with the electrons at random, so that there is no net exchange of
energy between this component and the electrons. The electrons in a
magnetron move in quasi-cycloidal orbits; at AB = 12,000 gauss cm, the
transit time for each cycloidal arch is equal to the period of field oscillation,
and it appears that under these conditions the effect of the zero component
is cumulative rather than random. The loss of efficiency could be ac-
counted for by either the transfer of energy from the zero component to the
electrons or perhaps by the less efficient coupling with the r-component,
because of the distortion of the orbits.

There is another way in which the zero mode can interfere with the
electron coupling. It was shown in the previous section, that proceeding
from anode to cathode, the N/2- or r-component of E, falls off much
more rapidly than the zero component. Thus it is possible for the zero
component to exceed the N/2-component near the cathode even though

t Electronic efficiency is the power delivered into the electromagnetic field divided

by the d-c power delivered to the magnetron. It differs from the over-all efficiency
in that it neglects losses due to the r-f currents in the magnetron resonant system.
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the N/2-component is much larger at the anode. This means that at any
instant the field near the cathode is unidirectional. Such a phenomenon
can interfere seriously with proper bunching of the electrons, and a loss
of efficiency or a failure to operate in the m-mode may result. This
effect may be most pronounced at high fields, because then the electrons
are initially confined to regions near the cathode.

It should be mentioned that in spite of these difficulties, the amount of
zero component is not a very critical parameter for operation below the
efficiency dip, because the maximum efliciency obtainable falls off rather
slowly as the zero to w-component ratio R increases. No studies have
been made of the effect of large amounts of the zero component for
operation above the efficiency dip.

Mode Competition.—The m-mode operation of rising-sun magnetrons
is subject to interference from certain of the other modes. The experi-
mental results indicate that the interfering mode is always either a

2
further, that it is possible to correlate the observed mode competition
with the distribution of modes. The results of this correlation can be
summarized as follows.

member of the long-wavelength group or the (ZX — 1>—m0de1 and,

Interference from the (X

5~ 1>-m0de occurs when wavelength

.

separation between the m-mode and the (g— — 1>-m0de is too small,

Just what constitutes ‘“too small’”’ cannot be stated precisely because
many factors besides the wavelength separation enter into mode competi-
tion. It has always been possible, however, to eliminate interference

2

general rule \,/\  x 1) = 1.05 may be considered a safe value.
y-

from the <N — 1>-mode by a proper increase in )"'/)‘(’X_l)' As a
2

Interference from members of the long-wavelength group occurs when
the ratio of their wavelengths to A\. becomes too large; the maximum
allowable ratio decreases as N increases. Again it is not possible to give

. . A N /(N .
precise values, but the requirement that Xj < »27/(—27 — 4) is an example
of one rule that has proved useful. A more complete discussion and a
physical interpretation of these results appear in Chap. 11.

It is apparent, then, that there are three major factors which govern the
w-mode operation of a rising-sun system. These are (1) I the ratio of the

¢

1 Interference is also observed from “nonmagnetron” modes, such as end-space

resonances.
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zero to the N/2-component in the r-mode field, (2) the ratio A,/ ( 1_.,_1),
2

(3) the ratio of the upper-multiplet wavelengths to the r-mode wave-
length. The system should be designed with B as small as possible,

with N\./A/ sufficiently large,
(5 - 1) /
/

and with the ratio of the upper

multiplet wavelengths to the = 225
mode wavelength not too large. /
The next section will discuss the 200 2

effect of the various parameters
of the resonant system on these
three factors. 175
3-4. The Effects of Various
Parameters on the Mode Spec-
trum and the Interaction Field of a 1.50
Rising-sun Magnetron.—Almost
all of the experimental and de-
velopmental work on the rising-sun
system has been done with the
vane-type anode block illustrated
in Fig. 3-1a. In these anode
blocks, the side resonators consist
of annular sectors whose sides are
formed by radial rectangular

=

;%/

>|>

1.25 /

1.00

)
/ \9 {7 -mode)

N

. 6
vanes. The set of design param- QQ
eters that has become associated 0.50 ¥7
with this design is (1) the ratio of
1.00 125 150 175 200
the large-resonator depth to the & (@

small-resonator depth (d»/d; = r;),
(2) the ratio of the anode diam-
eter to the m-mode wavelength
(da/N+), (3) the ratio of cathode
diameter to anode diameter
(d:/ds = ¢), (4) the number of
resonators (N), (5) the ratio of
vane thickness to gap width

d

F1. 3:10.—The effect of the ratio of
resonator depths on the mode spectrum and
the interaction field of a rising-sun mag-
netron. The dimensions are identical with
those given in Table 2-1. (a) Mode spec-
trum as a function d2/d. Both di and d: are
varied to maintain Ay constant. d is the
resonator depth for di = ds.  (b) Values of
1/r1 required to maintain Ay constant,
plotted as a function of d:/d. (c¢) R(ra) the

ratio of the zero component to the N /2-com-
ponent of Ey at p = 7., plotted as a function
of d2/d.  (For parts (b) and (c) see page 102.)

o= =(5-1)]
w==\ws )|
Although some of these parameters apply to other types of anode blocks,
the following discussion will refer exclusively to vane-type designs. The
effects of these or corresponding parameters with respect to other type
anodes can be deduced from a discussion to follow on the effect of varia-
tion of the side-resonator shape. é 27 -

E.G.& G.LIBRARY ‘oo Yoo
LAS VEGAS BRANCH
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The Ratio of Resonator Depths.—Figures 3-3 and 3-6 were used to
illustrate the effect of r; on the mode spectrum and on the interaction field
of the m-mode, but the process is actually more complicated. Although
all dimensions of the anode block other than resonator dimensions were
held fixed, the m-mode wavelength changed, so that relative to A, these
dimensions were not fixed (e.g., d./\. changed). In order to examine
the effect of r; alone, it is therefore necessary to change the large- and
smali-resonator depths simultaneously, in such a manner that the m-mode
wavelength is maintained constant, while all other anode block dimensions
are kept fixed. (This is the sort of change in r; that would probably

1 06

05 /

0.75
\ Y

-1 0.50 \

N -

0.25 AN
\ 0.2 4 —1
8 1.25 150 175 20 0l
d,
0 1.75
® 1 125 1.50 . 20

F16. 3:10.—TFor descriptive legend sec page 101.

be made in practice.) The effect of such a change in r, is shown in
Fig. 3:10a where the mode spectrum is plotted as a function of d,/d,
d being the resonator depth when d; = ds. Figure 3:10b shows the
value of 1/r, required to keep A, constant as a function of d./d. The
other dimensions of the anode block, all of which are held fixed, are given
in Table 2-1. The effect of r; upon the interaction field of the mmode
is shown in Fig. 3:10¢, where B (r,), the ratio of zero to N/2-component
of £, at p = 1, is plotted as a function of ds/d.

It is evident from Fig. 3-10a that a certain minimum value of r,
must be passed before the =- and 8-mode begin to separate and further
that the amount of separation which can be obtained between these two
modes is not unlimited. The bend in the curves of the short-wavelength
modes which occurs as r; becomes large is due to the fact that these modes
have ceased to be associated with the small resonators and have come to
correspond to the second group of resonances associated with the large
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d

F16. 3-11.—The effect of the ratio of resonator depths on the mode spectrum and the

interaction field of a rising-sun magnetron.

except that da/As has been reduced from 0.325 to 0.217.

d:/d. Both di and d: are varied to maintain Ar constant.

dy = d».

plotted as a function of d»/d.

Dimensions are the same as those for Fig. 3:10
(@) Mode spectrum as a function
d is the resonator depth for

(b) Values of 1/r; required to maintain Ar constant, plotted as a function of
ds/d. (¢} R(ra), the ratio of the zero component to the N/2-component of Ey at p = 7a,

(For parts (b) and (¢) see page 104.)
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resonators. The fact that the 8-mode does not reverse is fortuitous; it is
due to the particular values chosen for the other anode block dimensions.
An increase in 7, not only increases the separation between the r-mode

N . .
and the (5 - 1)—mode but also increases the separation between the
r-mode and the long-wavelength group and increases the quantity B (r,).
The latter two effects are undesirable, so it is best to have r; just large

enough to give sufficient separation of the m-mode and the <g — 1)—

mode. Just what value of 7, should be used depends upon the values
1

05 ]

0.75 /
\ 04 /
- 0.50 03 /
N z
\\ =
02
025 <
\ 0.1

0 ™~

10 15 20 25 30

0
L3 1.0 1.5 20 25 30
d ds
L] T

(¢
Fia. 3-11.—For descriptive legend see page 103.)
of the other parameters, namely, d./\., o, N, and r,. The specific
numerical values for some designs that have been found satisfactory are
listed in Chap. 11.

The Ratio of Anode-block Diameter to w-mode Wavelength.—The effect
of the parameter d,/Ar can best be studied by comparing the curves of
Fig. 3:10a, b, and ¢ with a similar set of curves in Fig. 3-11a, b, and ¢
computed for a different value of do/A,. The dimensions for this latter
set are also those given in Table 2-1 with the exception that d./\. has
been reduced from 0.325 to 0.217. Comparing the two spectra for the
same value of r;, while restricting r; to small values, one finds that the
separation between the 7~ and 8-modes is smaller and that R(r.) is larger
for the block of larger d,/A.. Figure 3-12a shows a direct comparison of
R(r,) plotted as a function of A,/As for the two values of d./A,, and
Fig. 3-12b shows A¢/A, as a function of \,/\s for the two cases. The
effect of a further increase in d,/\, is similar; that is, for equal values
of )\,/)\(1!_1), R(r,) increases while \s/\, does not change significantly.

2
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Inasmuch as the effects of increasing d,/\, are undesirable, it is best
to have da/\, as small as is consistent with other design considerations.
On the other hand, satisfactory operation is possible over a wide range
of values of R(rs), so that a correspondingly wide range of values is avail-
able for d,/A..

The Ratio of Cathode Diameter 1o Anode Diameter—'The general
effect of ¢ on the spectrum is given in Table 3-3 which lists the computed
wavelengths of the modes of an 18-resonator system with the cathode

£ =0217
03 16 4
da A< da
Pl 0.325 Pyl 0,325
_ 02 \ 14
LH
IM /
0.1 /] < 12 /
% % =0217, /
0 1
1 11 12 1.3 1 11 12 13
e -
e g
(a) (]

Fia. 3:12.—The eficet of da/Ax on the interaction field and the mode spectrum of the
rising-sun systems of I'igs. 3-10 and 3-11. (@) [2(ra), the ratio of the zero component to the
N /2-component of Ky at p = rq plotted as a function of Xy /Ag for two values of da/Ax.  (b)
The quantity A¢/Ax is plotted as a function Ay /As for two values of da/As.

present and with the cathode removed. It is seen that in this particular
case an increase in o reduces the m-mode wavelength but increases the
wavelengths of all of the other modes.

The direction of the wavelength shift is determined by the sign of

2x
[) [uo?l3(re, ) — elii(re, $)]d9, (16)

an increase in ¢ decreasing or increasing the wavelength as the integral
is positive or negative. For the values of r; and ¢ used in practice, an
increase in ¢ increases the wavelengths of all modes in the upper mulitiplet
and decreases the r-mode wavelength, while the wavelengths of the lower-
multiplet modes are raised or lowered as the cathode circumference is
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less or greater than (];7 — n) M. The rule for the lower multiplet is
approximate and holds only when the contribution of the higher-order
field components to the integral (16) is negligible as compared with the
<]§ — n) field components.! The reversal in the direction of the
wavelength shift actually occurs at a somewhat larger value of the cathode

circumference than (];[ —n) .

TaBLE 3:3.—THE Frrecr or THE PReESENCE OoF THE CATHODE ON THE SPECTRUM
or A Tyrican RisiNG-sUN MAGNETRON

An A, |
n )\; Ar : Dimensions
(cathode present) (cathode removed)
1 1.944 1.603 gf = 0.307
2 1.456 1.420
3 1.381 1.375 Z? =1.780
1
4 1.360 1.357
9 1.000 1.030 ;lf =0.226
8 0.920 0.853 6 = 0.068 radian
7 0.800 0.786 gf = 0.59 for \,
6 0.766 0.761
5 0.754 0.752 j = 0 for A,

As indicated in Table 3-3, the effect of the cathode becomes increas-
ingly less for the lower-wavelength modes of both the long- and short-
wavelength groups. In fact, for most purposes the effect of ¢ can be

neglected for all modes except the 1-mode, the ]; — 1)-m0de, and the

m-mode. Although the separation between the m-mode and the long-
wavelength modes increases somewhat when ¢ increases, the most signifi-
cant effect upon the spectrum is the loss of separation between the r-mode

2
The zero-component contamination of the w-mode, RB(r.), decreases
with increasing 0. For the magnetron in Table 3-3, R(r,) decreases from
0.161 to 0.106 when the cathode is introduced. There is an even greater
decrease in E(p) as p approaches r. because the discrepancy in rate of

and (ZX — 1>-mode.

1 This is always the case except when ry or o is nearly equal to 1.
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decrease between the zero and N/2-components is less effective for a
larger cathode. When the loss in mode separation is small, this effect
may compensate for the loss in mode separation as far as mode competi-
tion is concerned.

Actually the above considerations have very little effect upon the
choice of ¢. The size of the cathode has a very strong effect on the
relative strength of the various field components near the cathode
because the higher n-modes and higher v Fourier-components fall off
much more rapidly, moving in from the anode, than those of lower n
or y. The character of fields near the cathode is very important in
determining the amount of energy lost in the initial bunching process
and in determining the mode in which the magnetron will start. In
general, a reduction in cathode size increases the efficiency but also
may lead to mode-competition difficulties (see Chap. 8). Ordinarily
the smallest cathode diameter that gives stable m-mode operation is used.
It has been found experimentally that the best value for ¢ depends
almost entirely upon N and very little upon other parameters (Chap. 11).
Evidently the effects of varying ¢ are largely dependent upon magnetron
electronics.

The Number of Iesonators—If N is increased with fixed di, d,
d,, 7, and o, the wavelengths of all of the original modes are virtually
unchanged, but additional modes are added to the lower-wavelength
end of both groups of resonances. Thus an increase in N in itself has
no particular effect upon the significant characteristics of the resonant
system. Difficulties with large N systems are due mainly to the fact
that the maximum allowable ratio of the wavelengths of the upper
multiplet modes to . decreases as N increases (see Chap. 11).

The Ratio of Anode-segment Width to Gap Width, ro.—An increase
in ry, with dy, ds, ds, and ¢ fixed, increases the wavelengths of all of the
modes. The comparative rates of increase for the various modes are
such that the members of the upper-wavelength group move closer
together, as do the members of the lower-wavelength group, while
the 7-mode moves away from the (%V - 1)-mode and toward the upper-
wavelength group. Furthermore, R(r,) increases.

A pertinent factor in magnetron design is the modification of the
spectrum as 7, is changed, with d, and d; adjusted to keep the r-mode
and (% — 1)—mode fixed. In this case, the upper-wavelength group
descends while R(r,) increases. Thus an increase of r, might avoid
difficulty with the long-wavelength modes, but the increase in R(r.) would
cause some loss in efficiency. No attempt has ever been made to avoid
long-wavelength mode competition difficulties in this way, because the
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range over which r, can be varied is limited by mechanical considerations
(see Chap. 11). Furthermore, it has always been possible to solve the
problem of long-wavelength mode competition by closing the ends, as
explained in Sec. 3-5.

Vartation of Resonator Shape.—While the vane-type resonator is
most commonly used, other types having different shapes may have
mechanical or electrical advantages. One example is the hole-and-vane
combination illustrated in Fig. 3-1b. Inasmuch as all of the anode-block
parameters have been discussed for vane-type resonators, it is convenient
to consider other resonator shapes as modifications of the vane-type
and to define the “vane equivalent” of a resonator and an “equivalent
ratio” of resonator depth. The vane equivalent of a resonator is defined
as an annular sector resonator composed of vanes whose thickness is
equal to the width of the anode segments and whose depth is such that
its admittance at the m-mode wavelength is equal to that of the resonator
in question. The admittance of a resonator and that of its vane equiva-
lent will, in general, be different for wavelengths other than the r-mode
wavelength. The equivalent ratio r., is defined simply as the ratio of
the depths of the vane equivalents corresponding to the large and small
resonators; it thus replaces the parameter r, defined for vane-type
resonators. Two rising-sun systems that are identical except for reso-
nator shape and have the same m-mode wavelength and the same value
for 7., will have identical =-mode interaction fields; that is, £ is the same
for both.

Inasmuch as the admittances of corresponding resonators are the same
at the r-mode wavelengths, they will be nearly the same for wavelengths
near that of the r-mode. Thus the modes with wavelengths near that
of the m-mode will have nearly the same wavelength in the two anode

2
nearly the same. On the other hand, at wavelengths far from that of
the w-mode, the admittance of corresponding resonators may be quite
different, and the position of the long-wavelength group and the lower-
wavelength members of the short-wavelength group may be considerably
different for the two structures.

Aside from mechanical advantages, there are often electrical advan-
tages to be gained by a wise choice of resonator shape. Two advantages
relate to the circuit properties of anode blocks, the unloaded @ and the
equivalent capacity, discussed in Sec. 3-6. A third advantage lies in
the possibility of depressing the wavelengths of the long-wavelength
group. As an example of the latter, consider the anode-block section
in Fig. 3-13 which has the dimensions given in Table 2-1 except for the
resonators and which has an r., equal to 2.71. Table 34 lists the result-

blocks, and ordinarily the =- and (N — 1>-mode separations will be
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ant wavelengths of the spectrum in comparison with those of an equiva-

lent vane-type anode block which
has an r; of 2.71. It is evident
that the long wavelengths have
been considerably depressed at a
small cost in separation between
the - and 8-modes. Although a
similar spectrum could be achieved
with vane-type resonators having
a larger value of r,, the zero con-
tamination of the r-mode would be
worse. In general, large mode
separation is obtained by using
resonators whose admittances
change slowly with frequency, and
small mode separation by using
resonators whose admittances
change rapidly with frequency.
In the particular case given in
Table 3-4, the spread of the lower-
wavelength resonances and the
contraction of the higher-wave-
length resonances is due to the fact

/////////////

/4

Fi1g. 3:13.—Rising-sun system with modified
resonator shapes.

that the two groups of resonators were designed on this basis.

TaBLE 3-4.—THE SPECTRUM oF THE SYSTEM IN FIG. 3-13 CoMPARED wITH THAT oF
Its FQUIVALENT VANE-TYPE SYSTEM
A &re the resonances of the vane-type system; A, of the modified system

An N
" N Ao
1 2.183 1.604
2 1.697 1.279
3 1.621 1.241
4 1.602 1.231
9 1.000 1.000
8 0.828 0.864
7 0.616 0.607
6 0.570 0.544
S5 0.555 0.525

In the development of magnetrons considerable attention was given
to the possibility of modifying the symmetry of a resonant system in a
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manner that would leave the m-mode practically unchanged but would
have a marked effect on some of the other modes. The use of strap breaks
in the strapped system (see Secs. 4'1 and 4-7) is the major example of
such a modification. A somewhat analogous scheme for the rising-sun
system would consist of replacing certain of the resonators (large or
small) by resonators of a different shape but of the same vane equivalent
as the other corresponding resonators. Inasmuch as the admittances
of all of the large resonators (and those of all of the small resonators)
appear to be alike at the m=-mode wavelength, neither the resonant wave-
Iength nor the interaction field of the m-mode is affected. On the other
hand, for the non-r-modes, and particularly for those with resonant
wavelengths far from that of the m-mode, the various resonators no
longer appear to be alike. Consequently, for these modes the wave-
lengths will be shifted, the doublets split (i.e., the degenerate modes split
into two nondegenerate modes), the loading through the output modified,
and the interaction field distorted. One might expect, then, that by a
proper modification of resonators, interference from unwanted modes
could be avoided. Neither this scheme nor the one described in the
preceding paragraph has yet been tested on rising-sun magnetrons.

3:5. Closed-end Rising-sun Systems.—In the preceding sections it
has been stated that one serious limitation of the rising-sun system is
the competition which arises between the r-mode and the long-wavelength
modes in systems of large N and large r;. The difficulty is due to
excessive separation between the wm-mode and the long-wavelength
modes, and so a means of reducing this separation is required. The
closing of the ends of the resonators has been shown to be effective in
this respect (see Fig. 11-9b).

It is a simple matter to compute the spectrum and interaction fields
for a rising-sun system with totally closed ends. Similar to the treat-
ment of the unstrapped system (Sec. 2-8), the anode block and cathode
can be regarded as a section of waveguide. Then the resonant wave-
lengths computed for the open-ended system become the cutoff wave-
lengths of the corresponding TFE-modes of this waveguide. The guide
wavelengths for the various modes can be computed from these cutoff
wavelengths, and the resonant wavelengths of the first group of modes
can be found from the condition that A,, = 2h, where % is the anode
height. Explicitly, the resonant wavelengths are given by

xEﬂ
/ Aen )’
1+ (ﬂ)

where A, is the wavelength of the nth mode in the open-ended system.

An = a7
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Figure 3-14 shows the spectrum as a function of d»/d with r, varied to
keep the m-mode wavelength fixed. In this example the values for
d./Nr, 0, T2, and N are the same as those in Table 2-1. The behaviors
of 1/r1 and R(r,) as functions of ds/d are the same as those shown in
Fig. 3-11b and c.

In Fig. 3-15a and b the most significant features of this closed-end
system are compared with those for an open-end system having the same
value of d./A,. It can be seen
that for the same values of \./Ag,

R(r,) is somewhat smaller for the
closed-end system, while the ratios
of the upper multiplet wavelengths

ASS
to A (Ae/A. is typical) are con- 12 // 5
8

siderably smaller for the closed-
end system. This latter effect is,
of course, due to the fact that all
of the closed-end wavelengths must
be less than 2h. Thus, by making 1
2h/\, small enough (note that X
2h/\, is always greater than 1) it

11

(- mode)
1\

should always be possible to have -

the upper group near enough to the \ |
#m-mode to permit w-mode opera- g ’< D —

tion. There are, however, objec- 6 A
tions to making systems for which /

2h/ X, 1s very close to 1 because as 07

2h/N\. approaches 1, the separa- 5& /

tion between the 7- and (g -~ 1)- 06; 5,20 35
mode falls off to zero.! Further- r

more, for values of 2h/)\.— near 1 it ) _1"16. 3-14.—The spectrum of a closed-end
rising-sun magnetron as a function of d»/d,

is necessary that )\c./)\r be very with r; varied so that Ar is kept constant,
arge, which means thatthe physi- 1 3 e el o = e
cal dimensions of the system must  from Table 2-1.

be large.

The electromagnetic fields for the closed-end system are similar to
those of the open-end system except for the axial variation. That is,
E and H. are unchanged as functions of p and ¢, but both are multiplied
by sin vz/h (2 = 0 and z = h correspond to the two ends of the system).
H, and H, are no longer zero but are given by

! There is an optimum height that gives the maximum separation between thn
N . _
- and (—2— - 1)-modes for specific values of do/As, o, N, 1z, and R(ra).
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M, 0H.(p9) 7

H¢ = 41;hp 3¢ COs *E, (180}
— k?ﬂ' 6H2<py¢) N E.
Hp = EFHT COos h (18b)

The computed frequencies for a closed-end magnetron usually agree
within 1 per cent with the observed frequencies. Of course, no operating
magnetron has its ends totally closed because the cathode must be
insulated from the anode. Thus in practice “totally closed” mecans
that the resonators are totally covered but that the interaction space
remains uncovered. Under these conditions, the wavelengths are

0.20

16 /
Open // 0.15 //

14 \ . N /

:i"h )/ losed &
/

/] \C e | /Z Closed
// 0.05

10 [¢]
1 1.05 1.10 115 1.20 1 1.05 1.10 1.15 120
As L 4
Ag LY
(a) 1

Ti1c. 3:15.—(a) A comparison of the separation between the upper-wavelength groups
and the r-mode for closed-end and open-end rising-sun system.  Wavelength Adis typical
of the hehavior of the upper-wavelength group.  (h) A camparison of the zero-component
contamination of the w-mmode interaction field for closed-end and open-cnd rising-sun
systems.,
always higher than they would be if the ends were entirely closed.
For the m-mode the increase is about 1 per cent.  When d,/X, is small,
the effect on all modes except the 1-mode is from 1 to 2 per cent.  The
1-mode may be increased 20 per cent or more, but ordinarily this is of
no particular significance for magnetron operation. When d./A, is

N . .
large, the (»2 — 1 )-mode is also rather strongly affected (increases
as great as 5 per cent have been observed), and consequently the separa-
. N .
tion between the =- and the (E — 1 )}-mode may become considerably
less than the computed value.
In many cases, it is unnecessary to lower the long-wavelength group
as much as results from fully closing the ends; the long-wavelength modes
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can be lowered to a lesser extent by closing only the outer portion of the
resonators. Such systems are called partially closed-end systems.

Semiempirical methods for computing resonances, based on computed
frequencies, have been worked out for nearly closed blocks (see Chap.
11). Detailed information on the wavelength of non-r-modes is not
available. For systems that are less than half closed, an estimate of
the wavelength can be made to within 5 or 10 per cent by treating
the resonators as compound resonators. That is, the admittance of the
closed portion is computed and then considered as the terminating
admittance for the open portion (see Sec. 2-5). When the block is
nearly open, this method should be more accurate than indicated
above.

3:6. The Unloaded Q and \/C/L.—In addition to the resonant fre-
quency, there are two other circuit parameters that are of importance in
magnetron design; these are the unloaded Q(Qv) and the characteristic
admittance +/C/L.

Heretofore it has been assumed that the magnetron resonant system
is lossless. Actually, however, some power is delivered to a load, and
some energy is converted into heat by currents flowing in the metal
walls. The unloaded € is essentially a measure of the power dissipated
in the metal and is defined by

total stored energy

4 energy per cycle dissipated in metal

Qu =2

In a similar way one can define an external @ which takes into account
only the energy delivered to the output and the total or loaded @ which
takes into account both kinds of energy loss. These last two quantities
will be discussed in connection with the output circuit in Chap. 5. The

total stored energy is given by uo/2 /V |71]? dv, where || is the amplitude
of the magnetic field. The average rate of power dissipation is given by
1/2«6 [g |H|?ds [where § = (mfux)~* is the skin depth, f is the frequency,

u is the permeability of the walls, and « is the conductivity of the walls].
There then follows the well-known formula

— | |H|*dv
QU = 2\/7rfx Ko rfvf‘- (19)
K /g |H|? ds

Inasmuch as H is known throughout the magnetron cavity, Qv can
be calculated directly. In perferming the calculation it is helpful to
consider the resonators and interaction space separately and to compute
equivalent inductances and resistances for the various elements. Con-
sider the circuit in Fig. 3-16 with an alternating voltage of frequency
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/ = /27 and amplitude V across the terminals. The maximum energy
stored in the magnetic field is $L72 or $L(V?/w?L?), where 7, is the maxi-
mum current through the inductance. Thus, one can write

Ve
= il

where F,, is the maximum energy stored in the magnetic field. Also, the
power P dissipated in the resistance
is 3V*/R, so that one can write
_ R = V2/2P. These relations for L

J‘ l oo and R can be used todefine an equiva-

v 4 §R L {7 lent inductance and an equivalent
’[ resonant system.

resistance for the elements of the

The equivalent inductance of a
— resonator is defined simply as
Fia. 3-16.—DParallel-resonant circuit _ 1ra oy K - -
for the computation of equivalent induct-~ L=1 /2w Em’ where V is the am-
ances and resistances. plitude of the voltage across the

resonator opening. The energy stored in the magnetic field can be
computed from E, = uo/2 [V [H|2dr. Using this formula, the induct-

ance for various resonator shapes can be computed.! For the rectangular
slot (Fig. 2-9)

.
2ld sin {‘l Lo (notation as in Sec. 2:5).  (20)
sin 2kl>

h(kl)® (1 + ok

L =

For the annular sector (Fig. 2-11)
L = 2o { 4
hk? \wk2a®J (ka) N (kD) — J(kD)N (ka)]?
_ [Jg(ka)Nl(kb) - No(ka)Jl(kb)T _ 1}—‘. (21)

J1(ka)N (kb)Y — N1(ka)d 1(kb)

The previous formulas are for open-end resonators. For closed-end
resonators the voltage varies axially so that it is necessary to specify
the position at which the voltage is measured. Taking V as the maxi-
mum voltage amplitude, that is, the voltage amplitude at a median
plane, yields for the rectangular slot

1 The inductance defined as above means no more than is stated in the definition.
Because of the distribution of parameters in the usual resonators, the equivalent
inductance varies with frequency. However, for resonators such as the hole-and-slot,
in which the inductance and capacitance are more or less lumped, the variation of the
inductance with frequency is small.
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4ild sin? k.l

ey
2kl h2k?
where ‘
2r
ke = N X = open-end wavelength,
k= 2)\‘5 A\ = closed-end wavelength,

and for the a.nnulaf sector,
L:%‘p“‘? B ,,7,,,,4‘__ .
hk? |\ w2%kia?[d ((k.a)N (kb)) — Ni(ha)J (kD))
_ | Jolk@)N1(kd) = Nukea)Js(keb) |
Jilhea)N1(kD) — Ni(ka)d (keb)
2r [Jo(k @WN(kb) = No(ka)Ja(kd) | _ 17" 23)
Wk | Ji(ka) N (k) — Ny(ka)d 1 (kb)

The equivalent resistance for the resonators is defined in an analogous
manner as B = V3/2P. The rate of power dissipation can be readily
computed by use of the skin-depth theorem. The average power
dissipated is given by P = 1/25 /s [H|*ds. Thus, the resistance is
given by

.

N I
B \/ﬂ'f}l/:s |H|2 ds (29)

from which R can be computed for the various resonator shapes. For
the rectangular slot,

2 qin?
R = ﬂ’\/z d® sin® kI for open ends, and (25)
e« \fu sin 2k z)

hd + hl(l + e

h3k? 2k h3k?
for closed ends. (26)

R=2Eg\/i~ d? sin? k.l
€0 Vrfu hl[l +12(2d — k) +sin 2kl (1 2(h+2d))] +(k) hd

The inductance and resistance of the interaction space will be defined
for the m-mode only. For the non-m-modes very little magnetic energy
is stored in the interaction space and only a small fraction of the losses
occur on the cathode or anode surfaces. Furthermore, accurate informa-
tion concerning either the @ or the /C/L of the non-r-modes is usually
not desired, so the interaction space can be ignored in computing these
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quantities. In the case of the m-mode, only the zero component of the
field makes a significant contribution to the magnetic energy. The
inductance is defined as before by L = V2/2w?E,. In this case the
voltage V is taken as the line integral of E, around the anode circum-
ference or 2wE.(r,) where Eo(r,) is the zero component of E,(r.,¢).
Then

I = %g» {[J o(kra) N y(kre) — No(kra)J, (kn)]* 41

Jilkra)N1(kre) — Niy(kra)J 1(kr)
1 -1
TR T ) N ) = Nl(kra)Jl(krc)]Z] (27

for open-end systems, and

olkera) Ni(kore) — Nolkera)d 1 (kere)

. 8wy 0\NeT'a o/ 5\
L= {[J kN Urare) = Nalkara) Ty (ot )] +1
2 [goi(kcr,,);v}a o) = No(/\‘cra).ll(kcrn)]
h2k2kc7'a Jl(kcra)Nl(chc) - Nl(kcra)'jl(kcrc)

4 —1
TR T k) NG = N1<A-cra>J1<7«Zr§J} (28)

for closed-end systems. While the interaction space remains open even
for closed-end systems, the fact that the wavelength is hardly affected
indicates that the field distribution is similar to that which would be
present if the ends were closed.

Mo Tk 20T
kB=a \/ar'fp )
[ (kra)Ns(hr) — N (kra)J (kro))?
[
ﬂ%\/ o (1 B y”) Volkra) Nathr) = Ja(kr Nolhra) )

ux’

(29)

for open-end systems. The quantities «" and u’ are the conductivity
and permeability of the cathode surface.

It is a simple matter to compute Qu in terms of the equivalent induet-
ance and resistance previously defined. The total stored energy is given

by
LNV NV Ve
£ = ‘zwz(z Lyt L) (30)

where the subscripts ), rs, and ¢ refer to the two resonator types and the
interaction space respectively. The energy dissipated per cycle is given

by
LNV  NVE e
'27(2 R, ty R, TR 31

yielding
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1 R 1+R
Q= }o * ; (32)

N 2\ 1 ’
E. T (1 + R) (1 ¥ R) E.
where (1 — R)/(1 + R) is the ratio V,,/ V..

Computed values of Qu are usually considerably higher than meas-
ured values, protably because the conditions at the metal are not as
assumed. That is, with the very small skin depths associated with
microwave frequencies, small surface irregularities and surface contami-
nation have a large effect on the losses. The formula remains very
useful, however, as a means of comparing the unloaded @’s of different
anode-block designs and in particular as a means of comparing different
resonator shapes.

The characteristic admittance of the resonant system +/C/L relates
the power output of the magnetron to the r-f voltage between anode
segments. Its importance will become apparent in Chap. 7. Referring
to Fig. 3-16 2w(stored energy)/V? at the resonant frequency of the circuit
is given by /C/L. By analogy one defines v/C/L for the magnetron
cavity as 2w(stored energy)/V?2. As is always the case in defining
admittances and allied quantities for resonant cavities, it is necessary
to specify the path over which the voltage is to be measured. For
the r-mode of the rising-sun system this voltage is taken to be the average
of the voltage amplitudes at the large and small resonator openings; that
is, (V@] 4+ |V@|)/2. At resonance the total stored energy is equal to
the maximum energy stored in the magnetic fields so that +/C/L can
be found in terms of the previously defined inductance. The stored
energy FE is given by

V.J'[N 1 N/1—-R\*1 1 21
E—_“[fL,Jr <1+R) +N2<1+R)E]’

which gives

\jc (1+R> 2w[£+(i;§) +2N<1_+1_R>21]. (33)

In the design of a resonant system it is ordinarily desirable to have
both Qv and /C/L large and the shapes of the resonators are the main
factors in determining these quantities. Ordinarily resonator shapes
leading to large Qu lead to small values of v/C/L and conversely, so
that there is some conflict between these parameters. Resonators with a
large volume-to-surface ratio usually (but not always) lead to higher
valuesof Qy. Narrow or “high capacitance’’ resonators usually favor high
4/C/L. 1t should be observed that +/C/L is directly proportional to
the block height h while Qv is independent of the height, so there is at
least one means of increasing v/C/L without sacrificing Qu.




CHAPTER 4
THE STRAPPED SYSTEM

By L. R. WALKER

4.1, Introduction.—The first multisegment 10-cm magnetrons de-
veloped by the British were of the ‘“symmetric unstrapped” type,
described in Chap. 2. These early tubes operated at efficiencies of
from 30 to 35 per cent, but their output power was severely limited by a
change in the mode of oscillation as the current was increased. Assuming
correctly that the w-mode would be the most efficient mode, Randall
and Sayers at Birmingham used in 1941 what they referred to as
“mode-locking straps.” These were a series of wire bridges which were
attached to the high-voltage ends of the resonators in such a manner that
they connected pairs of alternate segments and passed directly over the
intervening segments. Because the paired segments would be at the
same potential in the m-mode but in no other mode, it was thought that
the m-mode would be but little disturbed, whereas other modes would be
damped because of heavy currents flowing in the straps. The device
was unexpectedly successful. The mode change was deferred to currents
about three or four times as great as those observed before strapping, and
the operating efficiency was increased to about 50 per cent. The presence
of the latter effect indicated that strapping, while undoubtedly beneficial,
hardly operated in the manner that had been anticipated.

An understanding of the function of strapping waited upon extensive
measurements of mode spectra and r-f field patterns and upon a better
insight into the relation between the electronic generator and the reso-
nator system. As a result of these studies and of experience with
operating tubes that exploited the practical merits of strapping, the
strapped-resonator system underwent considerable evolution with
increasing emphasis upon the strap itself as a circuit element. Figure
4-1 shows several stages in this process,

In this chapter the term ‘‘strap” refers to a circular (or, rarely,
polygonal) conductor connected to alternate segments of the magnetron.
Considerations of ciréuit requirements and of the method of fabrication
determine the exact form. Frequently, the strap is made in the form
of a flat strip bent into a circle with a series of feet for connection; it
may, however, be a wire or a flat annulus. The strap may be con-

tinuous all around or ‘“broken’ at one point above a segment to which
118
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it is not brazed. Generally, the strap is “recessed’” or ‘‘shielded” by
being set into an annular groove which is cut into the segments and is
concentric with the interaction space. There may be one ring at each
end of the tube (single ring) or two concentric rings at each end (double
ring). In the double-ring design, the corresponding inner or outer
straps at the two ends of the tube are staggered azimuthally by one seg-
ment, so that an individual segment is connected to only one of them.
In the same manner, inner and outer rings at each end are staggered.

Sk ST

k = i
Fig, 4-1.—Four stages in the development of strapped magnetrons.

These relationships are indicated in the schematic drawing of Fig. 4-2.
The expression “strap section” is used to refer to the part of the strap
system between the midplanes of neighboring segments. The terms
‘“‘weight of strapping,” ‘“heavy,” and ‘“light”’ strapping are in use to
indicate roughly the dominance of the strapping in the resonant system:
Thus, Fig. 4-1 shows a steady progress in time toward heavier strapping.

The two functions of the straps in a strapped-resonator system are
(1) to establish a wide separation in wavelength between the m-mode and
all other modes and (2) to affect the characteristic admittance of the
resonant system. One of the most noticeable features of strapping,
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marked at its first introduction, is that it increases the mode separation
of the system by considerably increasing the wavelength of the m-mode
while affecting the other modes to a lesser degree. Roughly, this effect
may be thought of as arising in the following manner. In the z-mode,
the midplane of each segment is a voltage loop, and current flows into
the straps that are in parallel with the capacitance of the unstrapped
resonator. The strap capacitance thus adds to the unstrapped-resonator
capacitance, increasing the wavelength of the system. For the other
modes, the individual strap capacitances are not all in phase with one
another and do not contribute so much to the tube capacitance.

Fia. 4-2.—Double-ring strapping,

1t is not yet completely clear to what extent the mode stability and
high efficiency depend upon a large separation between the m-mode and
its nearest mode. It is reasonable to suppose, however, that for good
r-mode operation, undistorted r-f field patterns in the interaction space
are necessary. If the fractional mode separation is approximately
equal to the reciprocal of the loaded @ of the desired mode, there will
be perceptible excitation of the next mode with consequent pattern
distortion. This implies that a minimum mode separation of a few per
cent is essential. The early unstrapped tubes (N = 8) had an (n = 4)-
to-(n = 3) separation of about 1 per cent, and both fields were severely
distorted under operating circumstances. The light strapping initially
used increased the separation to about 7 per cent with a considerable
gain in efficiency. The weight of strapping plainly provides a means for
varying the m-mode separation over a considerable range. When the
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tube is tunable, there appears the further complication of maintaining
the desired features of the mode spectrum over the whole tuning range.

Reference to Chap. 7 will indicate the great importance of the charac-
teristic admittance Y. for the operating behavior of the tube; Y. is
defined as 3}w(8Y/0w)]y.o, Y being the total admittance of the
resonant system measured at a slot. Because the product of pulling
figure and external @ (see Chap. 5) is constant at any wavelength, the
practical limitations on the pulling figure mean that the loading cannot
exceed a definite value. A relation exists, however, between the elec-
tronic conductance G, and the loaded @, and Y., given by

QLGe = Yc-

The electronic efficiency is a function of @., apparently increasing
monotonically with G. up to a rather flat maximum (see Chap. 10).
Thus, with limited loading, or @, greater than some fixed value, the value
of G. can be brought up to the level required for high efficiency only by
making Y. large enough. Because Y, is roughly equal to w,C, where C
is the capacitance of the resonant system, Y. increases as strap capaci-
tance is added (for the w-mode). The weight of strapping provides a
flexible means, therefore, of adjusting the characteristic admittance to a
preassigned value.

The following sections will discuss the mode spectra of strapped
systems and their dependence upon various parameters, the effect of
loading on the spectrum and on the r-f pattern, the asymmetries and
mode shifts introduced by breaking the straps and the effect of tuning
the system upon several of these properties.

4-2. Analysis of Strapped Systems.—As shown in Chaps. 2 and 3, the
relative simplicity of the geometrical structure of unstrapped magnetrons
permits considerable progress in their analysis by field theory. The
addition of a strapped system, however, makes an exact calculation of
the fields prohibitively difficult. Fortunately, in all practical cases,
satisfactory working solutions can be obtained using equivalent circuits.
In Chap. 2, where suitably equivalent circuits were used for the
unstrapped system, it was shown that this artifice is possible when
the higher modes of an individual resonator are short in wavelength
compared with any wavelength of interest. The strap sections may be
similarly replaced by simple equivalent circuits, essentially because their
dimensions are short compared with a wavelength over the range of
interest. The length of a strap is always its greatest dimension, and the
condition that it be short compared with the wavelength ) is that

2mr,

ﬂ<1’
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where 7, is an effective radius of the strap system.! The condition has
been easily satisfied in all magnetrons built to date, and the strap system,
having no resonances itself, except at frequencies far higher than that of
the system as a whole, may then be represented by any convenient circuit
having the appropriate low-frequency behavior.

It is important to state clearly the purposes and the limitations of
the equivalent-circuit approach (see also Sec. 7-1). This method sets
up a model of the resonant system that simulates its behavior over an
appropriate frequency band and that correlates the information about the
system, permitting predictions to be
, made about the effects of various
’ parameters. It is not, however, a
method for caleulating the system con-
, stants ab inetio. Thus, the procedure

G/’,,/ always consists In using some experi-
=~ mentally measured quantities either to
deduce others that might be measured
or to calculate the effect of changesin
———— the system. The equivalent-circuit
model is changed from one case to
another and is kept as simple as is con-

Fra. 4-3—Location of the terminals  Sistent with the inclusion of all the
of the network used to represent the factors considered relevant to a specific
unstrapped resonator.

case.

The equivalent circuits for the basie elements of the strapped system
may be considered here. The small mode separation of unstrapped
systems suggests that the coupling between oscillators is not strong.
In the analysis of strapped systems, then, the coupling through the
interaction space and through the end spaces will be ignored. This is
justifiable for the modes of highest n, because it has been observed that
the height of the end spaces and the presence or absence of a cathode make
little difference to the wavelength of these modes in strapped tubes.
An unloaded strapped system may then be considered as consisting of a
ring of N similar resonators that are coupled at their ends by the strapped
system. The unstrapped resonator will be represented by a 4-terminal
network with terminals A, B, and A’, B’ located as shown in Fig. 4-3.
Furthermore, this 4-terminal network may be supposed to consist of
a length h of waveguide having a cutoff wavelength A,; and charac-
teristic impedance K,o/\/1 — A2/N%. The cross section of this guide is

il

%

1 This inequality {(slightly changed by the substitution of the anode radius r, for r,)
occurs also in the theory of the space chargein Chap. 6, where it is given as a condition
for the neglect of the effect of r-f magnetic fields on the electroris and of relativistic
effects.
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ACDBEFG. The length h can be identified with the length of the anode;
and to a good degree of approximation, \,, can be identified with the
r-mode wavelength of the unstrapped system. The term K, is related
to the characteristic admittance of the unstrapped system in the m-mode
and may be calculated. A strap section may be similarly represented by
a 4-terminal network, consisting of a length s of parallel-plate guide of
impedance K,. The length s is generally found to correspond to a strap
radius somewhere within the strap system. No attempt is made to
distinguish between the inner and outer straps in double-strapped
tubes.

There is a measure of arbitrariness in the manner in which the con-
nection of the strap and the resonant systems may be represented. For

F1a. 4-4.—(a) A 4-terminal network representation for a single section of a double-
strapped tube; (b) a 4-terminal network representation of two neighboring sections of a
single-strapped tube.

double-ring strapping each section of the whole system has a left- and
right-hand symmetry (horizontal); thus it seems reasonable to place
half the length of each strap on either side of the unstrapped resonator
as shown in the circuit of Fig. 4-4a. When there is only a single strap
at each end, the circuit of Fig. 4-4b is suggested. If additional forms of
coupling have to be considered, they could be included by additional
4-terminal linkages at the ends of the unstrapped resonator (end-space
coupling) or at the midplane of the unstrapped resonator (interaction-
space coupling). In every case the circuit for the whole tube is found
by joining these networks. In general, there will be 2P 4-terminal
coupling links with P networks on each side. Although the applications
given in this chapter will involve only cases where P = 1 or 2, the general
theory will be worked out for arbitrary P.

4-3. Rings of Networks.—Before developing the somewhat abstract
analysis of the general case, a few facts may be recalled about the special
case of chains of identical 4-terminal networks, which might, for example,
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be filter sections. Supposing the networks to be symmetrical and lossless,
the relations between the voltages V; and V. and the corresponding
mesh currents I; and I, at the two ends of any given network are

Il = jYUVI + jY12V2,
Iz = “'jylzvl - jY11V2,

ar
Yu J
= —tuy _ I
Ve SO ol
Yy _ Yu
I, =] (Y” Y12> Vs YT‘; 1.

By writing —Y1,/Y,s = cos ¢ and —1/Y 1, = Z, sin ¢, where ¢ is purely
real or purely imaginary, one has in matrix notation

[VZ] _ [ cos ¢ jZo sin ¢] [Vl] - M [Vl]_
Iz ]Yg sinqS COS¢ Il 11
The impedance Z, is the iterative impedance of the section because if
Vi = Zoli, then Vy = Zyl.. The angle ¢ is known as the transfer angle;
for if V, = jZoI, tan ¢, then Vy = jZ,I, tan (¢ + ¢). With respect
to appropriate terminations, therefore, the network acts as a section of
transmission line of characteristic impedance Z, and electrical length ¢.
The quantities Z, and ¢ are, of course, functions of the frequency.

If one now takes N identical sections in a chain and forms a ring by
joining the corresponding terminals, there must be similar voltages and
currents at the two ends of the ring. Thus,

) w i [
[IM MY = L)

where V., and I, are the voltage and current at the end of the Nth
section. But this implies that

Det (MY — I) = 0,
where | is the unit matrix. However, because

My — [ cos N¢ jZ,sin Nqb]

" |jYosin No¢ cos N¢j’

(cos N¢) — 1 jZysin No¢
Det { jYosin N¢ (cos No) — l] =0,
or
1 —cosNop =0
and
No¢ = 2sm,
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where s = 0,1 - - + N/2 (assuming N is even) and

_ 2sr

=5
Thus, a ring of N 4-terminal networks will support a harmonic oscillation
only for those frequencies which make ¢ equal to one of the values
2sm/N. These are the frequencies of the normal modes of the system.
The modes will be widely spaced if ¢ changes rapidly with frequency.
As an example, suppose that each section consists of a shunt resonant
circuit of inductance L and capacitance C with a mutual coupling M

L L L L-2M
M M
C (o C Cc
(@) &)
F1a. 4-5.—(a) Schematic circuit of a chain of 4-terminal networks; (b) equivalent circuit

of Fig. 4:5a.

between each neighboring pair of inductances (see Fig. 4-5a and its
equivalent circuit Fig. 4-5b). The matrix for this circuit is

1 ollt A e —2m]l 1 0
1 JuC 1
= Yo ylo Y soa
1 L—2M .
I R S 1 1
joM W:MC JoM
Thus,
L —2M 1 L-M 1
csé=1+—5—— ¢ ="M~ oMC
29y _ g _ _ 1
2M(cos 2) L = T
and

1 _ oy (A
‘;i = C(L 2M cos? §> = (2—1(‘:) .

Thence if ¢, = 2sx/N, the resonant frequencies are

—1~ = C(L — 2M cos? %)

W]

The mode spectra in this and other cases are easily examined by plotting
cos ¢ as a function of w, or \, as in Fig. 4-6; the mode frequencies are then
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found by locating the intersections of this curve with the lines
cos ¢ = cos 2st/N. It will be noted that in this simple example the
network acts as a bandpass filter cutting off at o = 1/+4/LC and
w = 1/4/C(L — 2M) and that the resonant frequencies lie within the
pass band. As M increases, the separation of the modes and the width
of the pass band both increase.

In taking up the more general case, in which the number of 4-terminal
connections at each side of a unit network is unrestricted, methods similar

20 I to those of the preceding paragraph will
™ I be used. Certain restrictions due to
16 R £=30 symmetry will be put on the individual
12 ‘&122 N netw.orks and, hence, o.n.their impedance
LN matrices. The condition that the N
o8 ANAN networks be joined in a ring is then ap-
s \\ plied, and this is found to yield a
& X determinantal equation for the possible
0 frequencies. A few additional theorems
-04 §\ are proved concerning the matrices of
AV certain other structures, consideration of
-08 which arises in cases where asymmetries

-12 are introduced into the ring.
0 02 o4 :;'6 08 10 12 As each coupling is a 4-terminal net-

2o

work, the analysis can be made in terms
\ )\F!?- 4-6--;1095 ¢st 2 futnctiorr: x of the voltages and mesh currents at the
ci/rc‘:xit:a) l;vi':h xcm::::alocouspl‘;:g.- res\?al?xes pairs of terminals corresponding to each
ofcos ¢ > 1correspondtogimaginary. link. The reciprocity theorem will hold
Nois 2reV/IC. for these voltagesand currents. Letthe
voltages and currents at the pairs of terminals on the left be v =
(Vy, Vs, - -+, Vy)and i = (I5, I, - - -, I,) and those on the right be
u=(Uy, Uy ---,Upand j= (Jy, Jy * *+,J,), wherev,i,u,and |
are treated as vectors subject to matrix multiplication.
Let
i=Ywv+ Y, (1a)
=Y+ Y, (1b)
where the Y terms are square admittance matrices. The reciprocity
theorem then gives
Y, = —Y; 2

(the minus sign is a consequence of the use of cyclic currents in the
4-terminal links), and also that Y, and Y, are symmetric matrices.
Thus,

i =Y+ Yo, (3a)
==Y+ Yu. (3b)
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Consider the case in which the sections have
This implies that, simultaneously,

127

horizontal symmetry.

=7y e () =7(Y @
i j ~] —i
but by substituting from Eq. (3),

vl Y7iYe =Y (u

[i] = lY1Y;1Y4 +Y, —Y1Y;‘] [ j]’ )
and

] 2 | I EC

—j Yz + YAYEIYl Y4Y§'1 —i)?
hence,

Y4 = '_Yl. (7)

If there are N similar networks, the condition im

nection is
[V] ) [V
i

)

where v and i refer to the terminals of any section.

Det (I —T¥) =0
where | is the unit matrix.
Det Wil —T) =0,
where A} = 1.

i = Y1V + Y2U

and

—Yiv — Y,u.

B

i

-]

Now, if Eq. (10) is true,
[v Un
jm

Un
im

J

where llj"‘J is a characteristic vector for Eq.
Eq. (11)
xm.im = Ylxvnum + Y2um)
jm = —Y2>\,,.u,,. -— Y,u,,.,
or
(ALY + 20.Y, + Yo)u, = 0.
Thus

AN+ 1
2\m

Det (I

+ Yz_lYl) = 0,

posed by the ring con-

(8)
This implies that
9

Or, factoring the determinant, that

(10)

Rewriting Eq. (3), taking Eq. (7) into account, gives

(11a)

(11b)

(12)

(10). Substituting in

(13)

(1)




128 THE STRAPPED SYSTEM [SEC. 4-3

provided Det Y, = 0, where | is the unit matrix. If A, is written as
An = e¥~ where Ny,, = 2rm, Eq. (14) takes the final form

Det (—Y3'Y; — | cos ¥n) = 0. (15)

Referring to Eq. (5) it is to be noted that —Y3'Y; is, in an obvious
notation, the v-u matrix of a unit section. The determinantal Eq.
(15) now determines the possible resonances of the structure. There
will be, in general, p roots or p-resonant frequencies for each value of m.
The integer m will be used to describe the mode. It is related to the
familiar mode number »n by the relation m = (N/2) — n. The notation
my, Mma, * * * , My, may be used to denote the p modes for each m value.
Since the frequencies depend upon cos Y only, two values of ., lead-
ing to the same value of cos y» have the same frequency. Thus if
Vm =218 — ¢, or m' = N — m, m’ and m lead to the same frequency.
There are evidently N values of m; two of these, namely, m = 0 and
m = N/2, lead to a nondegenerate frequency; the other (N — 2)-values
of m occur in pairs of the form (m, N — m) leading to degenerate fre-

quencies. There are thus p(%r + 1) separate frequencies if the p

different frequencies for a fixed m are not degenerate.

1t is possible to write the section matrix T in a form that will be found
useful later. Suppose that angles ¢, ¢, . . ., ¢, are found such that
€OS ¢1, COS ¢2, . . . , COS ¢, are the latent roots of Eq. (15), and let
the diagonalized form of —Y7'Y, be denoted by C;. Then matrices
D, and Dy, may be found such that

- - _ {D% 0 C. S} (Dn 0
T=D m,nﬁ[ d o) [_Sl C][ R

where S, is also diagonal and has the diagonal elements sin ¢,, sin ¢,,
., sin ¢p. Between Di; and D,; the relation

S$iD2Y: + Dy =0 a7n

holds. It is easy to see that for r identical sections one has

T = D-'T;D = D [_‘S’: g] D, (18)
where C, and S, are again diagonal with elements cos r¢1, cos r¢g, = + -,
cos r¢, and sin re¢y, sin re¢s, . . . , sin re¢,, respectively. It may be
noted that if

u = D5 Do, (192)
then
v = jD5 Dadj. (19b)



Sec. 4.3] RINGS OF NETWORKS 129

From Eqs. (18) and (19) it is seen that the set of angles ¢1, ¢s, . . . , @5
forms a generalization of the usual transfer constant and jDD,, is an
extension of the usual iterative impedance; for if the network be termi-
nated on the right with a network whose impedance matrix is jD!Dos,
the impedance matrix at the left-hand terminals is again jD1Ds..

It may be observed that a chain of networks with 4-terminal con-
nections is a structure which exhibits a series of velocities of propagation
at any given frequency. With each angle ¢, there may be associated
a velocity of phase propagation 2r¢,/w at a frequency w; and further-
more, for each ¢,, there will be an individual cos ¢, vs. w (or A) curve,
leading to a set of resonant frequencies.

In the event that the cell possesses end-for-end or vertical symmetry
some further properties of the matrix may be deduced. If the various
voltage and current vectors be written

R

where the subscripts 1 and 2 refer to the two ends of the tube, then
vertical symmetry means that the same relations hold between v, i, u,
and j as between Av, Ai, Au, and Aj, where A is a matrix that transforms

the subscripts, or
0o |
A= ] 0]'

Applying this condition to Eqg. (11) it is found that

AY1A = Y1
and
AY:A =Y.,
which means that Y, and Y, are of the form
=]
Y = [Q 8] . (20)
The matrices D;; and D2; now have the form
R R
DII’DH = [S ___S]' (21)

A further proposition on unsymmetrical matrices which is made use
of in Sec. 4-7 will now be developed. Suppose that Y, and Y, are the
maztrices of networks which are mirror images (left and right hand) of
each other. This is implied if

() - (3 e
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and
[ =)
orif B = [IO _O|] y then
o (%) -va !
j i
and
B = Y.BY; or Y1 = B-1Y:B = BY,B. (22¢,

Now consider a case in which

Y.Y. [V.] = ["l] or  BY, [‘:] =Y.B [‘:] (23a)
v ) ] -»
L

0 2An| {v] _
[Con ) () =0
Thus

Det (A;;)) =0 and v=20 or Det (Ay) =0
and i=0. (23b)

then

and if

this leads to

A similar set of equations holds for Y,.

The single-strapped structure does not come within the scope of the
general analysis of this section because if the single sections are treated
as 8-terminal networks, they have no horizontal symmetry and neighbor-
ing sections are mirror images rather than identical. The symmetry
of the section is such that it is unchanged under a simultanecous exchange
of ends and of left and right, and if this is taken into account, it is not
difficult to show that the u-v matrix for two neighboring sections is

Q = 2APAP — |,

where A has its previous significance and P is the u-v matrix for one
section. By substituting in Eq. (15), one has
Det, (APAP — cos? ¢,,) = 0. (24)

It is probably simpler, however, to treat the single-strapped case as a
4-terminal network.
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SYMMETRICAL SYSTEMS
4-4. Fixed-frequency Systems.—In the most common case, that of
double strapping, the circuit for a single section indicated in Fig. 4-4a
may be dissected into three 8-terminal sections as in Fig. 4-7. The
over-all matrix T is of the form

T=T,T.T, (25)

where T, is the matrix of a half section of strap and T, is the resonator

matrix. The term T, may be written by inspection as
cos 68, 0 jK,sin 6, 0
_ 0 cos 8, 0 jK,sin 6,
T.= JjM, sin 8, 0 cos 6, 0 (26)
0 jM,sin 6, 0 cos 6,

where 26, = 2rs/\, the electrical length of the strap, and M, = 1/K,.
The matrix for the center section may be derived by supposing that the
resonator is a symmetrical 4-ter-
minal network with a matrix

a b

¢ o
and that & — b'c’ = I; the mesh
equations can be written and solved,

yielding for the center matrix T,
1 0 00
0 1 00
~% 5 10| @D
1 a
7 "y 0!

. ’r _
For the case consndered, a’ = cos 6, F1a. 4-7.—A single section of a double-

strapped tube represented as three 8-termi-

and b’ = jK, sin 6,, where 0, is the
electrical length of the resonator and

K, = 1/M, is its characteristic impedance.

1

0

—jM, ctn 6,
JM, csc 6,

T, =

nal networks.

Thus
0 0O
100
. 2
jM,csc 6, 1 0 (28)
—jM.ctn 6, 0 1

Forming the product T,T.T, and calculating only the u-v part, the

latter is found to be
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cos 20, + $K,M, sin 260, ctn 6, — 3K,M, sin 24, csc 6,
—3K, M, sin 26, csc 8, cos 26, + $K,M, sin 26, ctn 6,
The determinantal Eq. (15) now leads to

(cos 26, + $K,M, sin 26, ctn 0, — cos ¥)? = (3K, M, sin 20, csc 6,)?, (30)

] (29)

which faetors into the two equations

cos 26, + %K.M, sin 26, tan %’ (31a)

Il

COS Y
and
il
2
For future reference the matrix D which diagonalizes T according to
Eq. (16) may be written here. If

cos ¥m = cos 26, + % K,M, sin 26, ctn (31b)

1 1
pa- [ _Y) (320)
then
ctn %‘ ctn %
Dzz = ]K, tan 0, ¢ ¢ . (32b)
2 2
ctn 5 ctn 5

Consideration of Eq. (12) and Fig. 4-4a shows that for the m-mode,
where the voltage across the slots changes by 180° between each neigh-
boring pair, ¢» = 0 or m = 0. In this case, Eq. (32) becomes

2 o,

Etan 0,+M,tan§~0 (33a)
and

2 tan 6, — Moetn =0 335

K, tan b — M, ctn 5 = 0. (330)

The interpretation of these equations shows that in the first case the two
half-strap sections, open-circuited at the midplane of the segments, are
resonating in parallel against half the unstrapped resonator, open-cir-
cuited at the median plane, and in the second case, against half the
resonator short-circuited at the median plane. These may be referred
to as symmetric and antisymmetric modes and designated as the
(m = 0y)- and (m = 0,)-modes, respectively. A similar pair of modes
exists for any other value of m, and the symbols m; and m; will be used
to refer to them.
Returning to Egs. (31) the following substitutions may be made:
2rs Z,, 2rh A2

20 = K7=:! and 0r='_‘- 1 — —-
T VI= N/ N X,
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For the modes of greatest interest, A > \,,, with the result that hyperbolic
functions replace the trigonometric ones pertaining to the resonator.
Equations (31) then become

2rs K, A2 . 27s wh [\? _
€O8 Ym = cosT+QZ'1[-)‘—ED - lsmTtanh —)‘_\/)\—Eo 1 (34a)

2rs Ks A . 2ms wh k_2 —
COS Y = COS 5 + 7. \/g-_—i sin —= ctnh N \/)\30 1. (34b)

The nature of the mode spectrum and the effect of various parameters
upon it may now be studied by plotting the right-hand sides of Egs. (34)
as functions of \. Figure 4-8

and

shows the two expressions, which ,/é? —17 oA

may be called cos ¢; and cos ¢, as 12 1~ ;’ 1 v h®
. A e 21

functions of \/\,,, for four values / Ve \&/

of k = K,/2Z,,; namely, k = 0.8, 11 ; Za )

0.4, 0.2, and the limiting case / - ,/‘{)o A

k = 0. The term k measures the 10 T o =0:

. . . ~ / 7 / LT =02
weight of strapping, and it de- § / LT k2
creases as the strapping is made & ggq VAP e k=
heavier. Representative values o V4 % Lonleo N Lanp

< / . $322/5° 19730
for 2ms/A,, and wh/X,, are chosen; 08 /
these are 0.55 and 0.80. '2' // /

Over the interesting range of 8 / _PE4
M/A,,, €0s ¢ and cos ¢, are mono- 0.7 f
tonic increasing functions of this /
quantity; for sufficiently small 06 —
values of A/X\,, however, the tan-
gent and cotangent functions will 05
give rise to a series of branches, but 08 10 12 14 16
this region is generally not rele- % Ay
vant. At such values of )\/R,D, T1c. 4:8.—The dependence of cos ¢1 and

. cos ¢2 on A/A.g for various values of k in a
short waves are propagat‘m.g up double-strapped tube [see Eqgs. (34)]. The
and down the resonator giving a  solid lines are cos ¢1 (symmetric modes); the

series of modes. For the sym- jiofen 1ges ore cos 61 (antisymmetric
metric modes (cos ¢;), all the ¢ imaginary. For k = 0 the two sets of
curves pass through the point ™°des coincide.

(M A =1, cos ¢ = cos 2ws/\,,), and they lie above the limiting (¢ = 0)-
curve for A,, < X and below it for \,, > \. Askis decreased, the (cos ¢,)-
curves approach the limiting curve. The (cos ¢2)-curves, on the other
hand, lie far to the left for large k and move steadily to the right, tending
eventually to the limiting curve. Four horizontal lines are drawn on Fig.
4-8 corresponding to cos ¢; and cos ¢, equal to cos 0°, cos 221°, cos 30°,
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and cos 45°. The intersections of these lines with the (cos ¢,)- and (cos
és)-curves give the wavelengths of modes for which y,, = 0°, 224°, 30°, and
45°. These represent, for example, the (m = 0)-, (m = 1)-,and (m = 2)-
modes for N = 16 (¢ = 0°,224° and 45°); the (m = 0)-and (m = 1)-modes
for N = 12 (0° and 30°); and the (m = 0)-and (m = 1)-modesfor N = 8
(0° and 45°).

It is clear from the form of the curves that for either the symmetric
or antisymmetric set, the modes have the opposite order in wavelength
from that in number. Also, as the weight of strapping increases (k — 0),
the intersections move to the right for the antisymmetric modes; i.e.,
the wavelength increases. For
16 the symmetric modes the intersec-

\ tions move to the right if cos
¢m > cos 2ms/\,, and to the left if

14
2ws
cos < cos .
‘e ‘\ 1 \2}3 0° ¢m )‘ro
P 1.2 \\ I~
\ ¢=2215| Thus, whether or not the wave-
e L.
I N —| length of a mode is increased or
AR he22Yf %30 decreased by strapping depends
) N,

upon the mode number, the strap

o oo length, and the resonator wave-

Saopa length. Figure 4-9, derived from
0 02 04 0.6 08 10 .

k Fig. 4-8, shows the wavelength of

F1a. 4-9.—The dependence of A/A on & the modes as a function of k. For
for various values of ¢ and ¢: in a double- . . .
strapped tube. The solid lines are the & EIVEN mode the intersections
symmetric modes; the broken lines are the tend, as k — 0, toward the points
antisymmetric modes.

cOoS ¢m = c0s 2ws/N or, because
¢m = 2rm/N, toward X = Ns/m. Thus, the m-mode wavelength becomes
indefinitely long, while all the others tend to a finite limit, dependent only
upon the strap length, the mode number, and the number of oscillators.
The limiting wavelengths, in fact, correspond to 1/m times the strap
circumference.

In practice, it is of interest to examine the mode spectrum as a
function of weight of strapping, subject to the condition that the m-mode
wavelength remain fixed. It is thus necessary to adjust the unstrapped
wavelength A,, in each case. Figure 4-10 shows cos ¢; and cos ¢ as
functions of A/A,, where A, is the wavelength of the =-mode, for k = 0.8,
0.4, 0.2, and 0. The strap length and tube height used correspond
to those of Fig. 4-8 with k = 0.4; that is, the m-mode wavelength of
the (k = 0.4)-case of Fig. 4'8 is used as the fixed m-mode wavelength of
Fig. 4-10. - Figure 4-11 derived from Fig. 4-10 shows the variation of the
wavelengths of some of the modes as a function of k. The limiting

_ N N, 0N T |
0aPER A $=45°
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wavelengths in this case may be found by letting ¥ — 0 with A\, fixed in

Eq. (34a).
becomes

The equation then

2rs

~
2rs

Y

COS ¢ = COS

Y
TN

cos ¢1

tanh ;\Ls sin (35)
It is seen that in this case also, the
symmetric and antisymmetric
modes eventually tend for very
heavy strapping to coincide in pairs
of the same m~number and that
all the modes now tend to a finite
wavelength.

4.b. Effects of Various Param-
eters on the Mode Spectrum.—
The general behavior of the modes
is more easily examined if approxi-
mate forms are used for Eqgs. (34a)
and (35). Thus, if 2rs/\ is suffi-
ciently small to ignore terms of
higher than the second order in

2ws/\, the sines and cosines in Eq.
(35) may be expanded to give
cos ¢ = Cos ¢’ =
11 —]
=
10 %

\ 01,9
09~ ¢ =22
RN I — =37

U,
ﬁ X ] / ¢l=450
= 07 \\¢ \I\’g\\oo L —
0.6 \2:‘4@3\ 1,0
< <o~ =22
05 /Kf:: e
——— ‘22_:45° =3 2:::.%55255
04 ==
0 02 ©04 06 08 10

F16. 4-11.—The dependence of A/Ar on k
for various values of ¢1 and ¢ in a double-
strapped tube. The solid lines are cos ¢
(symmetric modes); the broken lines are
cos ¢: (antisymmetric modes).

(a condition that requires either a
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Fia. 4-10.—The dependence of cos ¢ and
cos ¢2 on A/Ax for various values of k in a
double-strapped tube. The solid lines are
cos ¢1 (symmetric modes); the broken lines
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are cos ¢2 (antisymmetric modes). For
k = 0 the two sets of modes coincide.
2r2s? | 2m’s?
or
sin? m
1 1 1 N
= =5 =5+ —55 (36b)
AN, M w’s

for the mth mode, where ¥n
2rm/N. With thesame condition
upon 2rs/A and the additional
requirement that

wh [ A%
tanh T ng—n -1
may be replaced by
Th \/E -1

NN
very short tube or light strapping)

Eq. (34a) for the symmetric modes becomes
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1 i sin? %n
™ n2s? (1 + ?>
with
A= N (1 + kih> (38)
and Eq. (34b) becomes
A? = T8 (39)
ks | gpe ™
;T osin® =

The close resemblance in form between Eqs. (36) and (37) is largely
fortuitous; Eq. (36) is valid for & small; Eqgs. (37) to (39) for & large.
Taken together they reveal the main features of the spectrum. Equa-
tion (38), which holds when the variation of the fields along the strap
sections and along the resonator can be ignored, may be written as

C
2 — \2 8
A=A (1 + _C,)’ (40)

where O, = 2s/wK, and C, = h/wZ,, are the strap capacitance and
resonator capacitance, respectively. This shows that in the wx-mode
strap capacitance is in parallel with the resonator capacitance.

The effect of the number of oscillators on the mode spectrum may
now be considered. From Eq. (37) it follows that if two systems are
built with the same ratio of strap length to w-mode wavelength, the
relative mode separations will be the same for light strapping if

1+ 'Lsh ~ sin? -

N

For modes with small m, #m/N is small and k is assumed large; thus one
can write

1
TN
for modes of the same m number. Thus, the weight of strapping required
to produce a given mode separation varies as N? for relatively light
strapping. Again, according to Eq. (36), the limiting mode separation

varies as
A sinm :
C25) oy
s Ns

when mm/N is sufficiently small. Now Ns is equal to 2«7, or very nearly

k
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2xr,. The mode separation is, thus, proportional to (m\,/2xr.)? and
depends essentially upon the size of the tube in terms of its operating
wavelength. Both Eqgs. (36) and (37) indicate that the mode separation
varies with 1/s? for a given number of oscillators, indicating the practical
importance of keeping the straps short. The effective length of the straps
depends somewhat upon the shape of the resonator because it affects
the distribution of voltage at the places where the straps are connected.
An illustration of this effect is given below.

The remaining variable whose effect is to be considered is the length A.
Because Eqs. (34a) and (34b) differ only in that one contains a hyperbolic
tangent, the other a hyperbolic cotangent, the m;- and ms-modes must
approach each other when the argument of these functions becomes large.
The condition for this is that

; .
‘%‘}31/;\7— 1> 1, say.

This may come about through heavy strapping (\,, << \) or for long tubes
(h large). As h is increased, the antisymmetric modes very rapidly
increase in wavelength, finally reaching a state in which the (m, = 0)-
mode is nearer to the (m; = 0)-mode than is the (m; = 1). Since most
output circuits do not couple out the
antisymmetric modes, this repre-
sents an undesirable condition. As
a solution for the difficulty center-
strapping has been used. Essen-
tially this means building a double-
length tube by putting end-to-end
two completely strapped systems
each of single length. The mode
spectrum of the whole system is
then close to that of its component

halves. ! ! W
Some actual applications of the I / A I

formulas of this section will give an (a) ®

indication of their reliability (see IF1c. 4-12.—Two types of strapping used on

Fig. 4-12). In a scaled—up model 16-oscillator magnetrons.

(Fig. 4-12a) of a 16-resonator hole-and-slot 3-cm magnetron (4J50) the
measured wavelengths of the (m; = 0)-, (m; = 1)-, and (m; = 2)-modes
and the unstrapped wavelength are 12.400, 10.152, 7.570, and 9.47 cm,
respectively. Any three of these may be used to calculate ¥ and 2rs
from Eq. (34a). With & = 0.46 and 2rs = 4.58 cm, the calculated
wavelengths are 12.35, 10.17, and 7.52 em. The effective strap radius
is 1.86 cm compared with the actual strap radii of 1.85 and 2.04 cm.
k, tentatively estimated from the tube grometry, agrees well with the
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above value. In a second 16-cavity tube (Fig. 4-12b) roughly twice the
length of the above, the first two modes (m; = 0) and (m, = 1) were
measured to be 10.53 and 8.45 ¢cm, and the unstrapped wavelength 6.78
cm. With a value of 4.41 cm for 2rs and 0.204 for & derived from
these measurements and Eq. (34a), the antisymmetric modes (m; = 0)
and (m; = 1) were found to be 9.51 and 7.59 cm. The measured wave-
lengths were 9.36 and 7.45 cm. In this case the effective strap radius is
about 17 per cent greater than the actual mean strap radius. Presumably
the lower effectiveness of the strap in Fig. 4-12b is due to the fact that
the outer strap overhangs the hole and interacts with the flux through it
and also to the shortness of the resonator, which puts the outer strap at a
relatively low voltage point. Further evidence on this point is obtained
from two 16-resonator vane-type magnetrons that had identical strapping
but different vane depths. The wavelengths of the (m;, = 0)- and
(m; = 1)-modes were, for the first, 11.701 and 8.879 cm and, for the
second, 9.545 and 7.852 cm. The unstrapped wavelengths can be
calculated with some accuracy for vane tubes (see Sec. 11-2) and were
computed to be 7.36 and 5.48 cm. With this information, 2rs becomes
4.22 cm for the first tube and 4.37 em for the second. Thus, the mechan-
ically identical straps are electrically about 4 per cent shorter for the
system with long resonators. The corresponding values of & are 0.263
and 0.230; the ratio of these is 1.14, whereas the calculated ratio of the
resonator capacities is 1.19.

For single-strapped systems the separate sections may be treated as
4-terminal networks. By evaluating the single term of the (u-v)-matrix
and using Eq. (15), the secular equation is found to be

2rs 27h | \?
cos Y, = COS N cosh T'\/XTO -1

1{. 2rs ., 2xh |N? K, [z Z., 1
+§ sstth\/)‘—”—1)<~Z—r—n )\—”—l—k—!—)\z—l); (41)

xrn

where the constants have the same significance as before, except s,
which is the sum of the effective strap lengths at the two ends of the
tube (per section).

Figure 4-13 shows cos ¢ as a function of M/\,, for values of k = 0.8,
0.4, and 0.2 for a single-strapped tube similar to Fig. 48 on double
strapping, in which 2rs/\,, = 0.55 and nh/\,, = 0.80. The behavior
of the mode spectrum under an increasing weight of strapping is con-
siderably different in this case. The wavelength of all modes (in the
range considered) increases with heavier strapping, and the mode order
is the normal one for strapped tubes. However, the mode separation
is only very slowly increased by increasing the weight of strapping, since
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the slope of the curves of the cos ¢ vs. A/\,, changes quite slowly with
decreasing k. Comparing the curves of Fig. 413 with those of Fig. 4-8,
it is apparent that the mode separation for heavy single strapping is far
less than for double strapping of the same impedance. The difference
persists even when the two cases are compared on the hasis of equal total
strap capacity.

The reason for the very different behavior of single-strapped tubes
may be found in the fact that the coupling path between oscillators now
includes the oscillators themselves.

Thus, if the resonant wavelength 12 =08 £=02

be increased beyond the un- k=ol4'
strapped wavelength by adding 11 .

straps, the coupling path of the / / / R
resonator is now beyond cutoff. g fi

With sufficiently heavy strapping ¢=|22.5b
the coupling through the resona- ‘

. 09
tor becomes relatively weak, and .
mode separation is difficult to 8 / =30
achieve. Actually, for sufficiently ~ 08
heavy strapping the model of Fig. [ / / =450
47 will break down because the ,, —

impedance of the coupling path
through the end cavities over un-
strapped segments will become 06 /

comparable to that through the
resonator. It may be noted. that 05 08 o 12 14 16
the symmetry of the single- Ma,

strapped tupe is such tha't, two Sets’ F1a. 4-13.—The depen:lence of cos ¢ on
of symmetric and of antisymmet-  A/\, for various values of k in a single-
rie modes’ do not exist. Thus, strapped tu_be. _Values of cos ¢ > 1 corre-
long anodes lead to difficulties be- spond to ¢ imaginary.

cause of poor mode separation between (m = 0, 1, 2), etc., rather than
between (m = 0y) and (m = 0,).

Evidence for the correctness of this picture of the mode spectrum
may be found in the data on the HP10V, a high-power 10-cm magnetron
for which wh/A,, = 1.48, 2xs/A\,, = 0.84, and N = 10. The ratio of
m-mode wavelength to unstrapped wavelength is 1.245, but the mode
separation between (m = 0) and (m = 1) is only 5 per cent.

The discussion of the mode spectrum of a strapped system has shown
that the distribution of the modes in frequency depends upon the nature
of the variation of the transfer angles ¢, with frequency. The strapped
system was discovered somewhat accidentally; and, so far, no resonant
system has been developed synthetically, in the sense that the word
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is used in filter design. It seems probable that alternatives to the
strapped or rising-sun systems with satisfactory mode spectra might be
found by deliberately synthesizing a network with desired transfer
characteristics, that is, with the required variation of the transfer angles
with frequency.

It has been stressed that the equivalent lumped-circuit treatment of
strapped resonant systems is not primarily a method for making wave-
length calculations but is rather a model that correlates observed data.
It is possible, however, to estimate wavelengths reasonably well by calcu-
lating A, Z., s, and K, and by making use of these values in the mode-
spectrum formula. Methods of calculating X\, Z,, s, and K, are
described at some length in Chap. 11 on the design of resonant systems.
A value of ), can usually be estimated for any resonator shape to about
3 to 4 per cent and Z,, with perhaps half of this accuracy; s, the equivalent
strap length, is the most difficult quantity to determine with certainty.
As has already been pointed out, it will depend upon the location of the
straps with respect to the resonator and upon the shape of the latter.
Errors in its determination will not seriously affect the caleulation of the
wm-mode wavelength, but they will cause considerable uncertainty in the
value of the mode separation, because this quantity is so strongly depend-
ent upon the effective strap length.

ASYMMETRICAL SYSTEMS

The discussion of the strapped anode block has so far dealt with
situations in which all the resonators were identical. Three departures
from this condition are important. The first is the case in which power
is coupled out from a single cavity. Here it is of interest to know how
the wavelengths are affected and to what extent the field patterns in
the interaction space are distorted. Experimentally, this distortion can
be produced by heavy loading, and a correlation with lowered operating
efficiency has been noted. The second case is the presence of strap
breaks. In some tubes mode transition under certain conditions of
operation can be prevented by breaking the straps at some point over a
segment; in general, the effectiveness of this procedure depends upon the
orientation of the breaks with respect to the output. Strap breaks give
varied effects: they cause a shift in the frequency of the modes for
m # 0, thereby affecting mode selection (see Chap. 8); they may influ-
ence the coupling to the output of the modes; finally, they cause dis-
tortion of the field patterns for m = 0, thereby making power transfer
to those modes inefficient. The final case occurs in consideration of
tuning schemes in which the frequency of the resonator system is varied
by introducing reactance into a single cavity. This problem is an
extension of that of loading; the questions of pattern distortion and
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variation of mode separation are important. In principle, most of these
questions can be answered; the complexity of some of the results may
suggest recourse to a model, however.

4-6. Pattern Distortion and Mode-spectrum Effects Caused by
Loading.—Pattern distortion due to loading or tuning may be ade-
quately treated. Because most single-cavity tuners and output circuits
do not couple the antisymmetric modes, the 8-terminal network used
so far may be replaced by the 4-terminal one, which is obtained by
considering only the upper or lower half of the tube open-circuited at the
median plane. The resonator system will then be represented by a ring
of 4-terminal networks, one of which is shown in Fig. 4-14a. The matrix
for one section is then

F = cos ¢ jZ sin ¢
~ yY sin ¢ cos ¢
10 cos 26, jK, sin 26, 10

]—)%"—’ 1] {jM, sin 26, cos 26, '7—% 11’ (“2)

where Y., = M, tan 6,/2 and all of the other symbols have their earlier
significance. Thus,
cos ¢ = cos 26, — K7’ Y. sin 26,, (43)
and
Z sin ¢ = K, sin 24,. (44)

The cos ¢ is identical with the function cos ¢, used before. If one
oscillator is loaded and the load is considered to be transformed to the
upper (or lower) end of the oscillator slot, the ring of 4-terminal elements
is changed by the addition of a shunt element, V.4, say, and appears
as in Fig. 4-14b. The condition for periodicity is now

vl S ) = (%) (45)

Using the known expression for T¥ the determinantal equation is now

cos Nop — 1 jZ sin N¢ —0 (46
Y St N¢ + j¥ioma 005 N¢ oS N§ — 1 — Z¥ioaq sin No| — @)
or

. N¢(. N 1 N

sin 74’ (sm —2¢—) -3 Z'Y 100a COS 795) = 0, (46b)

which leads to
sin T = 0, for P = 0, (47a)




142 THE STRAPPED SYSTEM ISec. 4-6

otherwise,
tan ¥ 4 lzy., =0 (&7b)
2 2
These equations show that except for the n=-mode each of the modes of
the symmetrical tube is degenerate and consists of a doublet, one compo-
nent of which will couple the output and one which will not. The

(m = 0)- or (¢ = 0)-mode is nondegenerate because, as can be seen
from Eq. (44), Z sin ¢ remains finite and, therefore, so does Z sin N¢/2

R S N I S

j Yres K‘, s j };ES

(a)

1] — T T
Y, Y, . JY, iY,
~| L Ky, = 3¥oas - K, 5 ==
L

Fig. 4-14.—(a) The 4-terminal network tor one secﬁon of the resonant system; (b) addition
of a load to the ring of 4-terminal networks.
in Eq. (46). The degeneracy of the modes was also apparent from the
fact that the terms of the form e£¥~ that appeared in factoring T¥ — |
[Eq. (9)], coalesced into cos ¥, in the determinantal equation when
m %= 0. Equation (47b) and the equations that define cos ¢ and Z
determine the frequency shift. The variation of loading among the
different modes may be examined if Eqs. (44) and (47b) are combined
to give Y,, the admittance looking into the tube at a slot,
sin ¢ tan %

Vi =Y, = +2 K, sin 20,

(48)

or, as it may be written by using Eq. (43),
tan N¢

Y. =+ 2 (2 tan 6, n Y...)-
¢ K,
tan 3

For the x-mode the bracketed term vanishes, and Y., the ¢haracteristic
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admittance, is

1 Y N_. 9 tan 6,
ST S T NEYR=T I

For m 5= 0, the unbracketed term vanishes, and

tan V¢
_ 1/2 tan 6, 9 2 _2mm
Yc = - 2( K + Yres) a)\ d) ¢ - N - ‘Pm
tan -
2
_ _N{f_tans, of, 3¢ _
= Z (2 + Y“,) ctn § ()\ a—x) 4) = ‘Pm.

" But
d¢ . ¢ ¢

a 1K,Y.
—_ il — 2 — T8 43
A X sin 2 cos ) AN E5Y (sm 0, + 2 sin 20,)

from Eq. (43). Therefore,

) d ftanb, Y.,
Nt 4 >\6¢__N K,smé),coso.)\a)‘(K + 2)
2 M) T T2 X o (tan 0 | Y
, sin 6, cos 6, K. + )

tan 6, |, Y.. a .
N < K, + 5 ))\5 (K, sin 6, cos 6,)

. tan 6, Y. ’
K, sin 6, cos 0,( K, + —2—)

3 tan 4, N[ tan 6, 9 .
5( + Ym) 5 ( K + Y,,,,) A== log sin 26,
-

22

(2 tan 0, + Y) + N( tan 6, Y,.,.) gf ctn 26,

and

—-2Y.

Since we have considered only one-half of the tube, these values Y. may
be doubled to obtain the values for the whole tube.

For small values of 6,, A\(8/d\) log sin 28, = —1, which simplifies
the second term. The characteristic admittance for the m-mode is N
times that of a single section open-circuited at the midplanes of the
segments. For the other modes, essentially because of the fact that they
have an uncoupled component, only N /2 times the characteristic admit-
tance of the individual resonator appears, together with N times the
actual admittance of the individual oscillator. It must be kept in mind
that the values of Y. found above are not actually those which enter into
measurements of Q-values, because the admittance used here appears
at the top or bottom of a slot. The individual oscillator containing the
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output circuit acts as a transformer between the slot and the place at
which the output circuit is supposed to begin. The effect of this trans-
former is discussed in Chap. 5.

The amount of pattern distortion caused by loading or tuning may
be analyzed in terms of the field patterns of the undisturbed modes.
Suppose that the actual voltages and currents across the resonators are

Vo, Vl, Ce ey V(n_x) and Io, 11, “ e ey I(n—l)- Let the amplitude of the
mth mode be an., where, if traveling waves are used, m has the values
0, +1, +2, - - - | +(N/2 ~ 1), N/2. Then the voltage V, on the rth

resonator satisfies

V., = Zamef"”m (49)

m

Multiplying Eq. (49) by ¢~ and summing over r, one has, because
NWm — ¢n) = 2r(m — n),

N-1
Nan = 2 T, (50)
r=0
If a quantity bm is defined such that
N-1
me = Z e—"""”"‘If,
r=_
then
am) _ Vo e | V1] L =y | V-1
sl = (v () v () o
an

m 1 N—1

Ne#=T {Z”') = g9 [‘;‘) C e 4 e i=Dim [1;”"‘]

+ gmeaT {‘;z-‘] 2)

But considering Eq. (45),

= VN—I _ 1 0 Vo
T (IN_.] = [—jY._d 1] [Io] (53)
The result of subtracting Eq. (52) from Eq. (51) and using Eq. (53) is
— Ty O] = L 0 0] V"]
(= [b..] N [+jY.... o) LI (54)

or, by equating terms,
(1 — ¢= cos ¢)am ~ € ¥~jZby 8in ¢ = 0
— i an 80 6 + (1 = &= con @b = +¥ieus o
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Eliminating b., an satisfies the equation

am(cosS Y — €O8 @) = — %ZY..M IT/V—D sin ¢;
or, using Eq. (47b)
—sin ¢ tan Ne¢

2

= N(cos ¢ — coS ¥m) (55)

228

The term ao gives directly the amplitude of the (m = 0)-mode; 2a.,, gives
the amplitudes of the remaining standing-wave patterns. It is to be

1.0 ——

'm='1,n=5 /
09 ™.

' \ ﬂ/ m=0, n=6""N
08 \

o o
[+)] ~
=

Amplitude am
o
(8,

04 \ 7
03 /
0.2 / \
/ m=2,n=4 m’i’;z'"_"
ol e m=d nT n=3 g
P
0 m=5n=1 — m=5n'=1
087 089 091 093 095 097 099 101 103 105
Cos ¢
1 X 1 1 1 1 1
65 70 75 80 85 90 95-

Wavelength N in ¢cm
Fig. 415.—The amplitudes of various modes as functions of A. Values of cos ¢ > 1
correspond to ¢ imaginary.
noted that a,, is expressed entirely in terms of the angle ¢ which is pre-
sumably already known as a function of A. As an example, Fig. 4-15
shows the relative intensities of the modes in a 12-resonator magnetron
as a function of ¢ and wavelength. If this magnetron were tuned by
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introducing reactance into one cavity, Fig. 415 shows the relative
intensities of the component modes when the system has any of its
resonances at ¢ and . For convenience the quantity —a,, /[{ e )] has
been plotted. Iquation (55) is, of course, also vahd for the case of
resistive loading when ¢ is complex, but Fig. 415 applies to purely
reactive loading (cos ¢ veal). It is of some interest to note that with
substantial mode separation, distortion scts in above and below the
z-mode at about the same rate.

In the simple case of loading, the perturbations are relatively small.
Yor the m-mode when Yi.q is sufficiently small for terms in the expan-
sions of cos ¢ and sin ¢ higher than ¢? to be neglected, Eqgs. (43), (1),
and (47b) give

2 = — Yj;‘ K, sin 26,; (56)

Eq. (565) under similar circumstances hecomes

and using the value of ¢?,
— YooK, sin 26,

2a.,
2N sin® T2
For large N and short straps this becomes
_ YlondKa S_AZ
2am = - ’ﬁzz‘— ()\1r )‘ (57)

This is a result which might have been expected. It shows that distor-
tion will be severe when the effective strap circumference sN is large
relative to A,. It also shows that when the coupled admittance is
comparable to the strap admittance, there will be distortion and, finally,
that the other modes are excited in amounts varying as 1/m?.  Because
the tangential component of electric field for the mth mode falls off
roughly as (r/rg)¥®=m the pattern may become badly distorted at the
anode because of a small amount of high-m component.

A further source of pattern distortion is the longitudinal variation in
field strength that arises from the influence of the straps at the ends. In
the symmetric modes the fields have an axial variation of the form
cosh 2mz/N v/ (N?/A}) — 1, measuring 2z from the median plane; in the
antisymmetric modes, a hyperbolic sine is involved. This variation is
considerable in heavily strapped tubes; thus in the long tube deseribed
at the end of Sec. 4-5 the fields at the end are twice as great as those at the
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center; in the lighter strapped and shorter tube, also referred to in Sec.
4-5, the difference in fields is about 15 per cent. This source of pattern
distortion may be removed by center-strapping.

4.7. Effects of Strap Breaks.—In double-strapped tubes the two
straps at one end of the tube are customarily broken and each break is
made over a segment; the straps at the other end of the tube are con-
tinuous rings. There will then be an odd number of sections between the
breaks. The breaks may be represented in the equivalent circuit by a
series reactance introduced at the discontinuities of the strap system as
shown in Fig. 4-16. The same arrangement of the sections that was used
in the loading analysis is used here, namely, two coupling sections in the

K. Y K, %

7] ~ 35

NN

k)
N
x
AN

=

)

Fig. 4.16.—Equivalent circuit of two neighboring sections in a strapped tube; one section
contains a strap break. The appropriate matrix is indicated for each part.

center and half the resonator section at each end. The matrix for a
“break’ section will be

10 jX 0
o1 o of (1 jo

T==15 o 10‘[0 I]' (58)
00 01

If there were strap breaks at both tube ends on the same segments, then
Q would be given by
_ [X 0o}
o- (¥ 3 (59)

Referring to Fig. 4:16, let the matrices for the normally left- and right-
hand sections be L and ‘R respectively. Then

T =D"'T,D = LR. See Eq. (16).
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One may write

L = D'T,%DF (60a)
and

R = F-'ID-1T %D. (60b)
Then

T = RL = F-'D'T,DF. (61)

Thus, T is the new section matrix and may be put into the same quasi-
diagonal form T, as T, while DF has replaced D. If the two diagonal
submatrices of DF are (DF);; and (DF).s, these may be found and are

1 COS %—1‘ cOos %
(DF)y, = cos 0, Cé e (62)
CcOs D) CcOs 5
and
CSC %1 CSC %1
(DF).; = jK, sin 8, é s (63)
cse —2—"2 — C8C 52

Starting now from a point halfway between the strap breaks, supposed
(2p + 1) sections apart, where p is an integer, and using T’ for the
temporary symbol of the matrix of a section containing a break, the
periodic condition may be expressed as

[Tovo—sTr o) TrT Tov—n) [\:0] = [\:O] (64)
0 0
But T’ is given by _ )
T = F DT :DTsD-'T,:DF. (65)

The two matrices in brackets in Eq. (64) correspond to sections that are
mirror images, and they satisfy an equation such that the theorem proved
in Eq. (23b) may be applied to either of them. The first of the matrices
may be written as

F—1D—1T W/u—r=2:DT,D-'T, 0+ DF;
and putting
[‘:9] = F 1D 1T w2—r—1DT,D 1T, DF [:O]a (66)
0

0
then, according to Eq. (23b)
ip =10 =0, (67a)
or
Vo = Vo = 0. (67b)




Skc. 4-7} EFFECTS OF STRAP BREAKS 149

Now
v_|DPu O}V jO] D7t O] _ |1 jDuQD3).
DTBD"[O Dn][o )L o oz) = lo )i (88)
and using the forms for Dy; and Ds, given in Eq. (32), the result is
1 b2
tan -5 tan —
. X ctn 6, 2 2
iD1QD%; = ;Iél (69)
* ltan @ tan &
2 2
for breaks at only one end and
1
tan o 0
. X ctn 6,
iDnQDz = X0 2, (70)
¢ 0 tan —2—2

for breaks at both ends. The conditions (67a) and (67b) lead then to
[—Sw2 + jSw/2-p-15(D1QDZ)Sp116 ] (DF)11ve = 0 (71)

or

[Swre + JCn/9—p-12(D11QD5) Cip415](DF) 200 = 0 (72)

Using Eqs. (69) and (67) and the fact that the determinants of the
matrices between bars in Eqgs. (71) and (72) must vanish, the following
equations may be found:

2K. . Né1 . Né» . Noa2| . N_ 1
¥ otn 0 sin 3 sin ~9 +sm7 [sm (5 P Q) ¢1]

[sin (p + %) ¢1] tan %‘ + sin N;ll [Sin (—]2! e %) ¢2:|

[sin (p + %) 4>2] tan %2 =0 (73a)

and

—Yi{fn‘ ;. sin M;J sin NTd’z + sin 5’292 [cos (g -p— %) 4);]
1 1 . N¢; N 1
[cos (p + —2-) d;l] tan o + sin o~ [cos (—2- —p— Q) ¢2]

[cos (p + é) ¢2] tan %" =0 (73b)

for breaks at only one end. Because X 3> K, tan 0, for all normal strap
breaks, the first term may be neglected and
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Zl;—z [sin (g —p - %) ¢1] [sin (p + %) ¢1] tan %’

+ sin N;l [sin (g o %) ¢2] [sin (p + %) ¢2] tan %—2 =0 (74a)

an
N2¢2 [cos (Z%T —-p— %) ¢>1] [cos (p + %) ¢1] tan %‘

+ sin N2¢1 [cos (]%/' ol —;) ¢2] [cos <p + %) ¢2] tan %2 = 0.

For breaks at both ends there are four equations obtained by equating
each of the bracketed terms to zero. The appearance of four equations
in this case is a consequence of the fact that there still is end-for-end
symmetry and a complete separation into symmetric and antisymmetric
modes. When the break is at only one end, the two sets of modes are
mixed and the only symmetry is that about the plane around which
the breaks are symmetric. Thus, the modes for which ic = 0 have a
voltage loop in this plane, and those for which v, = 0 have a voltage
node. The w-mode is not affected by the strap breaks unless so much
of the strap is removed that the capacitance of neighboring strap sec-
tions is affected.

The wavelengths of the (m; = 0)- and (m; = 1)-modes of the HK7
magnetron have been measured with unbroken straps and with strap
breaks at one end, 30° and 90° apart (p = 0, 1). For this tube ¥ = 12,
From the unstrapped, the (m; = 0) and (m; = 1)-wavelengths in the
unbroken case the values of k and s have been calculated and used with
the aid of Eqs. (74) to evaluate the first three wavelengths in the broken

[Sec. 4-7

sin

sin

(74b)

TaBLE 4:1.—THE EFFECT OF STRAP BREAKS ON THE WAVELENGTH OF SEVERAL
Mobes oF THE HK7 MAGNETRON

Strap condition » No. of m; | Exper. )\, | Cale. ),
mode cm cm
Unbroken........................ .. 0 10.645 10.645
{ 1 8.081 8.075
0 0 10.645 10.645
0 1’ 8.400 8.687
0 1" 8.900 8.783
1 0 10.645 10.645
Broken atoneend................. 1 1 9.165 9.086
1 1 8.663 8.483
2 [ O I,
2 ) S 9.248
2 | AL 8.190




SEkc. 47 EFFECTS OF STRAP BREAKS 151

strap cases for p = 0, 1, and 2. The agreement with experiment may
be seen from Table 4-1.

The 1’ modes are those having a voltage loop midway between the strap
breaks; the 1" modes, those having a voltage node. The experimental
wavelengths are properly assigned according to pattern measurements.
It may be seen that the order of the 1’ and 1" modes depends upon the
separation of the breaks; the order cannot be predicted without an
examination of a specific case.

Some information on double breaks at each end is available from the
(N = 16)-model 4J50 given in Sec. 4-5. Table 4-2 shows the agreement
between measured and calculated values.

TasLE 4-2—THE EFFECT OF STRAP BREAKS ON THE WAVELENGTH OF SEVERAL
MobEs oF A (N = 16) MaeNETRON, THE 4J50

Strap condition » No. of m, | Exper. \, | Cale. A,
mode cm cm

0 12.400 12.35

Unbroken........................ 1 10.152 10.17
2 7.570 7.52

0 12.460 12.35

Broken at bothends............... 0 1 11.660 11.57
2 9.970 9.99

The pattern distortion caused by strap breaks may be calculated by a
modification of the methods used earlier in this section. Since both
symmetric 4nd antisymmetric modes are excited, there will be two
amplitudes, @, and a., corresponding to these for each mode number m.
In terms of these, the voltages V(. 4 and V(. 5, say, at the two ends for
the mth mode are given by

V('"AA) = Qm, + A, (75(1)
and
V(mlﬂ) = a,,,l — amg; (75b)
or if y
am m
) e i
Vim = [} _}] a, = Wa,. (75¢)

As before, if v, be the voltages at the two ends of the rth oscillator,

v, = w 2 eir\Pmam
m
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1 )
= — —IT¥m
Wa,, i E e ivmy,,

T

and

If b, now be introduced as a similar generalization of the b,, used before

[see Eq. (31)];
wwili) = 5 (1) @

Then, for the case in hand,

Ne—¥-TW [;’"] = z =i+ D¥m T [‘?],

r

and
0 — vty [5) = comon (1] 7 (%)
bm Ip4a ip
+e..j(N_p)¢,,,, Y(N—p) . -T— Y(N—p—l) . (77)
Iw—p) W v—p—1)

But,

["(M] -7 ["] = F-1D-'T#D(T, — )D-'T#DF [‘j]

l(p+1) Ip »

= F-ID~IT#D(T, — 1)D-1To»+ DF [‘:"] (78a)
Q

and
{Y“’-mJ -T {Y”"’"L] = F1ID'(1 — T#DT DTy~ %)
l(v—p) fy—p-1
TrDF [Vig] — FoID-T,#D(T; — D-1T,~»HoDF [Vig]- (786)
Now,

D(Ts — Dt = (8 jD“QD?ﬂl],

6]
with the result that

D(Ts — DTyt o9 — [?J'DuQDz‘z’S(pHﬁ) jDIIQDﬁ]C(pHé)]
0 6]

and
D(Tz — DD 1Tz e+ DF {\:2] = [jDuQDz(F Sipa1s (DF) 11vo

+ Cio6) (DF)2eio)].  (79)

Now, if Eqgs. (71) and (72) are written out at length, it is easily verified
that either
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io=10 (4010Dz)S 416 (DF)11ve =

|
—_—

] =E (80a)

Vo=0 (1010QDF)Cp1yy (DF)aniy =

I
—

] = E. (800)

Thus, the right-hand side of Eq. (77) may be written

_p#r — i)Y J(r 1] E
. s + e
e ) F-1D—1T {[ ]

_
— e 722 sin (p + $)¢n] F1D-1To¥ [g]
if ip =0, or

_fn —i(pH18)¥m i(pH19¥m] E
; e + e
e "ZTF-ID-IT % {[ ]

0

_m
=¢ "2 2c0s (p+ $)¥n FID- 1Ty [g] (81)

if Vo=0.
Equation (77) thus becomes
N(l — Ty (3] = [ 2T i8I0 () 4 1y ][FﬂD—IT u (B
b.) — cos P T B¥m ““loJ |
(82)

where the alternative j sin and cos forms correspond to the cases for
io = 0 and vo = 0 respectively. Multiplying both sides by

et¥aT-1 = F-1D-1(e¥=| — T5?)DF

gives
1= Co (0] dm
NF-D 1[(QCOS\L,,,)I -2 [O Co]]DFW {bm]
. w"] _-\‘7’"
= [2’ o (p + %) wm] F-iD-1(¢ 2 Tk — ¢ "2 T¥) [g] (83)

cos
but

(cos ¥m)l — Cy

[ ) (coswm)l—c]DFW[ ]
2
2

L sin( 1> . 2jCys sin 28, cos %" [E] .
= - ;
o8 — 28, cos ‘,/2 2jCy4 sin - ‘p'" 0

hence

N[(cos ¥n)l — Co)(DF);;Wa,, = [J sin <p ) \Lm] 2jC,; sin - ‘p"' E. (84)

COs
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According to Eq. (62), however,

cos 95-1 cos %1
(DF) 11 = sec 6, ;
cos 2@ — cos L
2 2
therefore,
2 cos ¢21 0
(DF)1/W = sec 6, . (85)
0 2cos ki
Substituting in Eq. (84) then,
1
oS Y, — COS ¢y 0) [* 2 0 A,
N sec 6, U cosy, — cos ¢
" : 0 cos &2} Lom
2
1
cos
— sin Ym 2 1
7 cos ( + 2) ¥m SID D) ¢2] [ ]) (86)
0 cos &
2
and finally,
J_.CS(')I: ( ) VYo SID ‘b" cos 8,
O = N(cos ¢, — cos ¢1) (87a)
and
N len(p + ; )¢msm¢'" cos 6,
Gy = 3008 : (87b)

N(cos ¢, — €08 ¢2)

The relative loading of the modes when strap breaks are present can
also be calculated. It will be sufficient here to outline the method of
analysis and to quote the final results. Suppose again that the strap
breaks are (2p + 1) sections apart and that between the output oseil-
lator and one strap break there are g oscillators; between the output
oscillator and the other break there are r sections in the opposite direction.
The relation N = 2p + ¢ + r + 4 holds. The problem is most easily
handled by using the T matrices rather than the T. If the matrix for a
loaded oscillator is written D='(T, + T,)D, the condition of periodicity
gives

DT¢(To + THTETHTE+ 1 T5D [V,j] - [\:(’] (882)
0
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By rewriting this equation as

T #D-1T,DTE(To 4+ T,)T;D-'T:DT,+9D ["f] =D [‘:0] (88b)
) 0
and again as

T DT DT/ 224 4 To(q—r—l)/2T”T0(r—q—1)/2]
T wD—=5D-1T ;DT 79D [Vt}] =D [Vé] (88¢)
i i

0 0
the problem assumes a more symmetrical form.

If it be assumed that the coupling does not link the antisymmetric
modes and that the load admittance is shunted across the output reso-
nator in the median plane, the form of T, may be calculated. It is

1 0 tangl 0
lesec2ﬂ' 2
T, = 22 iK.sin 20, ¢° 0 O 0l (39
oA r hds
1 2 tan2 ctn2 0 1 0
00 00

The problem is considerably simplified if the second and third rows and
columns of all the matrices are both interchanged. This brings the T,
matrices to the form

cos ¢y Sin ¢ 0 0
« _ | — sin ¢1 cos ¢1 0 of |Ta O .
= 0 0 coS ¢z sin ¢a| [ O To (90)
0 0 — sin ¢2 €OS @2

The load matrix T, takes the form

1 'mav.n%—l 00
x _ _v! . il _ L, O \
T¥ = —Y'K, sin 26, ctn2 1 0 _[O ol’ (91;
0 0 00
0 000
where
leec”&
y=-_4% 2 |
1———K'Ytni'
2 03

The break matrix D—!TzD becomes
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¢1 2

tan - O tan 5 0
X ctn 6, 0 0 00
-1 * .
(D-1T:D) 3K, b1 s (92)
tan - 0 —tan— O
2 2
0 0 00

The form of the load matrix shows that it does not couple the m, set
of modes; the strap-break matrix, on the other hand, has off-diagonal
terms leading to a mixing of the m;~ and ms-modes.

The final result for the perturbation of the modes when X — o is
contained in the equation

2jY K, sin 4, -~ . —
e T R G R G I P

where

z; = sin ~N—2¢—1 cos (p + %) $2 COS (g —-p — 1) @2 tan %2

+ sin %@cos(p + %) 5 cos(%r —-p— %) ¢; tan %‘,
2 ~—sm—{—lmn(p—l-%)dnsin(%—p—%)d:ztan%z

+ sin N2¢ sin (p + %) o, sin (%I —-p - %) ¢; tan %‘;
Y1 COS ]Xz?—l COos (p + %) ¢2 COS (g —p— ;) ¢ tan d;

N 1 N 1
<+ cos 2¢ cos(p+§>¢1cos(—2— —p—é) ¢1tan%‘;

and
Yz = cosl;—s—lsin(p + %) msin(g —-p ~ 1) ¢2tant‘-‘

+cosJ—\%¢—2sin (p+%> ¢lsin(%—p )mtan g‘

It may be noted that this is the equation which would determine the
mode spectrum in a single-cavity, tunable tube with strap breaks.

The loading can now be found by forming 3Y /dw from Eq. (93) and
putting ¥ = 0. The result is
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. N 1 :
aY 1 sin ¢; cos §_p—§ @1
dw  jK,sin 6, cin " ; q )
i} 1
3% {ctn 31 [tan (p + §> ¢ + tan (%f - P — %) ¢1:|
1 ‘N 1
+ ctn ¢ | tan | p + 3) ¢ + tan \5 —P—35) (94a)
or
. . 1 ?
3y 1 sin ¢; sin (%7 —_p — §> 3]
dw  jK,sin 6, cos | g q 1

i} 1 N 1
™ lctn %1 [ctn (P + §> ¢1+ ctn (7 2 E) ¢1]
+ ctn ¢2 [ctn (p + %) ¢2 + ctn (%f —-p - %) ¢2]l- (94b)

The variation in the loading of the two sets of modes as the output
position is changed is deseribed by the terms 1/[sin? (r — ¢/2)¢,] and
1/[cos? (r — q¢/2)¢1] and is readily calculated, since ¢, is known. It will
be noted that the loading for each mode is the sum of terms pertaining
to the symmetric and to the antisymmetric components.

4.8. Effects Caused by Various Types of Tuning.—The properties of
tunable tubes discussed in this section are those directly connected with
the resonant system. The general principles and methods of mechanical
and electronic tuning are given in Chaps. 14 and 15.

Single-cavity Tuner—In single-cavity tuning a variable reactive
element is connected into a single resonator section, thereby changing
the frequency of the whole system. The reactance is generally introduced
in such a manner that the antisymmetric modes are not coupled, and
they are, therefore, untuned. Similarly, the tuning element will not
affect those components of the doublet modes (m = 0) which do not
couple with the perturbed cavity. The addition of strap breaks, how-
ever, will cause all modes to be coupled to some extent. For simplicity,
this discussion will be limited to the case without strap breaks. The
equations determining the new frequencies have been given in Sec. 4-6.
They are

cos ¢ = cos.20, — K';v ™ sin 20,, (43)

Z sin ¢ = K, sin 20,, (44)
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and
tan X8 4+ lay.. =0 (47b)
2 2
Combining the last two equations gives
2 sin ¢ tan %9
= Yiuner = m = F()\). (95)

The tuner reactance transformed to the end of the resonator slots is
represented, as before, by Yime. Cos ¢ is already known as a func-
tion of M, so that the right-hand side of Eq. (95) may be plotted as a

, ]
L/

/ P

6.0 7.0 80 9.0 100
Aincm
F1a. 4-17.—Single-cavity tuning curves [see Eq. (95)].

function of X. Figure 4-17 shows the form of this function in a particular
case. Because sin 2¢, and cos ¢ are well-behaved functions of M in
the range considered, the function always consists of a series of branches
running between the poles of tan N¢/2 or ¢ = [2r(m + §)]/N. The
dependence of Yime upon A cannot be specified, of course, until the form
of the tuning reactance is known. In general, — Yin. will be an
increasing function of A with no poles in the tuning range. The inter-
sections of — Yme and F(M) now give the new frequencies. As the curve
for — ¥Yuume moves up and down because of the variation in the tuning
reactance, it can be seen that all the modes that are coupled change
wavelength in the same sense. No matter how much susceptance is
coupled in, the mth mode, originally at ¢ = 2mx/N, cannot move beyond
[(2m + 1)x]/N. Thereis, therefore, no crossing of the modes. The main
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difficulties in the single-cavity tuning schemes arise from the pattern
distortion in the r-mode. Equation (55) showed that the pattern dis-
tortion in a tube with a given number of oscillators is a function of ¢ only.
Distortion, then, is minimized by making the change in ¢ over the tuning
range as small as possible; this, it may be recalled, is the condition for
large mode separation.

The loading of a single-cavity tunable tube can be treated as before
by considering the insertion of a shunt element jY... into the output
oscillator. If the number of oscillators between the tuner and the output
is (p — 1), the periodicity condition is

[m.i (1)] Tr=s [jYIT (1)] T [\:Z] = [\:EJ (%6)

This is found to lead to

. 1 No 1
2smN¢<ZtanT+§ YT)
sin N¢ — ZY 7 sin p¢ sin q¢

~Yina =

)

Thus, the characteristic admittance, Y. = —#\(8Y\0aa/3N),

N¢ N¢
2 -
cos® 3 <tan 5 Yr

N Aax Z T3
2 cos? 5 P ¢

N¢ N¢
cos? —/~ tan —-
2 a 2 Y,,, +ta.ll ¢|) + % (98)

= x —
N E)) o\ 2 K,
2 cos? (5 - P) ¢ tan 3

The value of Y. thus varies with the relative position of the tuner and
output as sec? [(N/2) — p]¢. The variation over the tuning range does
not lend itself to expression in a simpler form. It should be noted that
if the Y. defined here were used to calculate Q values, the resistive loads
would also have to be transformed to the top of the resonator slots.

To avoid the pattern distortion arising from tuning a single cavity,
a number of schemes have been devised that act more or less sym-
metrically on all the cavities.

Multicavity Strap Tuner.—In this form of tuning a grooved ring,
mounted at one end of the tube and having its axis coinciding with
that of the tube, is moved up and down with respect to the strap system.
The grooves are arranged so that the tuner can appreciably penetrate
the strap system without directly contacting it (see Fig. 4-18). The
other end of the tube is strapped conventionally. For the following
mathematical treatment, it is supposed that there are no strap breaks,

2Y. =

Yioad =0

Yi0ad =0.
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although, in practice, they would be used. The model used differs from
that of the ordinary double-strapped tube only in that the strap imped-
ances are taken to be different and written K., and K., where one
impedance is fixed and the other variable. The effective strap lengths

Grooved ring

it iy

Anode block

Straps

F1c. 4:18.—Cross section of strap tuner.

are assumed equal. The strap or coupling matrix is then

coS ¢, 0 jK,isin ¢, 0
0 CcoS ¢, 0 jKJZ sin s .
JM,; sin ¢, 0 cos ¢, 0 (99)
0 M, sin ¢, 0 cos ¢,
The (u-v)-matrix is now found to be
cos 2¢, + ~K‘HTM' ctn 6, sin 2¢. ~ Ku
K KoM ’

M, csc 8, sin 2¢, cos 2¢, +

*ctn 8, sin 2¢,
(100)

2 2

and the secular equation

<cos 2¢: + E%% ctn 8, sin 2¢, — cos qb,,.) (cos 2¢.

u M 2
2 ctn 6, sin 2¢, — cos ¢m> = KK, (MQ—' csc 6, sin 2¢.) - (101

If K,./2Z.0 = k; and K,2/2Z.; = k. (using the same symbols as before),

_ 2¢s N . 2ms| ki + ke 2wh
cos ¢, = €08 <~ \/)‘ED lsm)\[ ) th—\/)\z-—l

N B (5 o

There are, as before, two sets of modes corresponding to the ambivalent
sign; when k; = kg, they reduce to the earlier m, and m. sets of modes.
If the tube is short or the strapping light, if, in fact,

ks + ks 2rh X
(kl_h) > sinh? 2% 4/)\30 1 (109)
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the second term under the radical is negligible. The tube then behaves
as a symmetrical tube with k¥ = k; + k5. The behavior of the modes
will then be as indicated in Fig. 4-9. At the opposite extreme, with a
very heavily strapped or very long tube,

2wh  [N\?
ctnhT )\—30 —1=1

2rh  |\?
csch( )\\/)\70 — 1) = (.

The term in brackets of Eq. (102) then becomes ki or k2; the two ends
of the tube are effectively out of touch with each other, and the spectrum
consists of the untuned modes as-
sociated with one end and the
tuned modes of the other end.
Multicavity Segment Tuner.—
It is also possible to tune by strap-
ping the tube at only one end and
then moving a flat ring up and (@
down above the unstrapped ends
of the segments. This arrange-

: ) T
ment, shown in Fig. 4-19a, intro- c
[« [+] [

and

duces a new form of coupling. As
represented in Fig. 4-19b, it may
be seen that the ring coupling is b o

. . Fia. 4-19.—(a) Schematic view of seg-
effected by the capacitances of the ment tuner showing the tuning plate P over
segments to the ring and that the the anode block A; (b) equivalent circuit
finite length of the ring section of segment tuner.
introduces some series inductance. It is assumed that the ring and the
segments form a transmission line of impedance K, For simplicity
the length of one section is assumed to be equal to the strap length.
This is not unreasonable, because the ring and the strap system are
usually the same size. The arrangement of the sections then assumes the
form shown in Fig. 4-20 in which the resonator is in series with the cou-
pling network at the unstrapped, tuned end and is in shunt with the
straps at the strapped end. The matrix for the resonator section now
has a new form. If the 4-terminal network representing the resonator
has the matrix

solution of the network equations gives
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1 0 0 0
.
o 1 (104)
-7 01 i
a a
0 00 -1
for the matrix of the center section. In this case
1 00 0
_ secd —1 0 —jK, tan 6,
T = JM, tan 6, 0 1 sec 0,1’ (105)
0 g 0 -1

The coupling matrix is exactly like that for the strap-tunable tube with
1

N

&

Fra. 4-20.—A 4-terminal network representation of one section of a segment-tuned
magnetron.

impedances K, and K;. The (u-v)-matrix for the whole section is now

cos 2¢, — 3K, M, sin 2¢; tan 6, — K.M, sin® ¢, sec 8,| (106)
cos? ¢, sec 6, — cos 2¢, + K. M, sin 2¢, tan 6,

The determinantal equation {Eq. (15)] gives

(cos Ym — cos 2¢, + K, M, sin 2¢, tan 8,)(cos ¥, + cos 2¢,

— $M /K, sin 2¢, tan 6,) + K‘;Mt sin? 2¢, sec? 8, = 0. (107a)

Using the notation k, = K,/2Z., and k. = K,/2Z,, and substituting the
usual values for M,, 6,, and ¢., Eq. (107a) may be put in the form
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¥ cos¢/m+cos——
4k. \lxz, — 1tan h—\/xz,

ctnh 2rh \/ — 1cos ¢y, — cos 2rs W

A

VNN — sin 2%8
ta, hzlh — lcos\b,,.—eoszis
)\’ A

k, +

,\/>‘—2 -1 sin 2ms

A A2 A
The behavior of this expression may be clarified in the following way:
consider the case k, = « when the tube is unstrapped. Then the term

in brackets is unity; and for tubes that are not excessively long and that
have short straps,

1 hf» 2rs

i ()‘En - 1) (cos ¥m + cos T) (108)
The curves of 1/4k, against A? are thus very nearly straight lines through
(A\%,0), and their slopes vary as cos ¢, + cos 2rs/\,.. Furthermore, for

\ very large the bracketed term tends to a constant value, and the values
of 1/4k, become asymptotic to

(107b)

h (;‘: — 1) (cos ¥m + 1).

The wavelength A, of the modes varies, then, as 1/cos (§/2). The
m-mode has the smallest wavelength, and the wavelengths ascend in
order of m. Thus, in the segment-tuned system the ring coupling is
dominant and the mode order is that of an unstrapped system (see Chap.
2). This result is not surprising, because the end-space and interaction-

space coupling in the unstrapped system are weak forms of the same type

of coupling that is provided by the ring. Returning to Eq. (107b), the
denominator of the bracketed term does not vary much for values of A
between \.q and 2\, say, and the expression

€0s ¥ + cos —2:—3
sin 2rs
A

is usually not zero in that region. Thus, the behavior of 1/4k, for k,
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very large is determined by the remaining factors or

27s A2 2rh N2 . 27s
(COSII/,,. - cos—)‘—+k.\/)\—zu — ltanhT N — 1sin —)‘—)

1
sin 2&9
A

(109)

The term in parentheses in Eq. (109) is of the form of the function
cos Ym — cos ¢ for a strapped tube of length 2h, the resonances being
determined by the points for which the function equals zero. Thus for
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Fra. 4-21.—Values of 1/k: plotted against A2/A%,, for the cases k, = «, 1.5, and 0.65.

k, = =, the order of the modes is that of a strapped tube. In this type
of tuner then, as k, is made sufficiently small, the modes will cross over
completely and shift from the strapped order to the unstrapped order.
A Bell Telephone Laboratories 30-cm magnetron uses this form of
tuning. For this tube the values of 2rs/\,, and 2ah/\,, are 0.473 and
1.71. TFigure 4-21 shows 1/k, plotted against A\?/)\% for the cases k, = «,
1.5, and 0.65. The inversion of mode order and consequent crossing is
plainly in evidence. It is possible to compare the above analysis directly
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with experiment, using the physical strap length for s, the wavelength
of the m-mode with the tuner retracted, and the slope of one of the
unstrapped tuning curves in order to calculate the tube constants.
Figure 4-22a and b shows the observed and calculated tuning curves for
the unstrapped tube and for the normal tube. The agreement is good
except for the (m = 3)-mode, which lies at the border of the theory.
Experimentally, (m = 1)-, (m = 2)-, and (m = 3)-doublets are resolved
by various asymmetries such as the cathode leads and the notches cut in

32 ﬂg e 30 —
AR AT
m=2,[n=2
28 /A % / / Se2
/ / m=2,|n=2 ‘7//’ 24 /jm=0/n=4 A
£ 26 r// A /;" /, L,
° [/ i § ] A
£ / /4 Z c 22 7 7 v o
~u 2 77:-1 n=3 2 < ( /j/’/ =1)n=3
1A s
22 /A ’/ e /’/
! Z, 7 _ /_\ N 18 ,l,//
= m=0[n=4 V
20 ,/’ - 16 7/ /)
AT
18 14
0 2 4 6 8 10 12 0 2 4 6 8 10 12 14
1/k, 1/k,
@ ®)

Fia. 4-22.—Calculated and observed tuning curves for an unstrapped, experimental
30-cm magnetron. The solid lines indicate calculated values; the broken lines, observed
values. (a) The slope of the (m = 0)-curve is fitted to the experimental value at 1 /k; = 0;

(&) (m = 0)-curve is fitted at 1/k; = 0. (Courtesy of W. B. Hebenstreit, Bell Telephone
Laboratories.)

the tuner to clear them. These details were not included in the theo-
retical analysis given here.

Multicavity Inductance Tuner—A third symmetrical tuning scheme
is the “inductance’ tuner which was developed by Columbia Radiation
Laboratory for use in 3-cm tubes, because the use of strap and segment
tuners was almost prohibited by difficulties with high voltages and small
clearances. In the inductance tuner a series of pins is mounted at right
angles to a movable plate, the up-and-down motion of which causes each
of the pins to penetrate (without contact) into the holes of a hole-and-slot
resonant system. The 2J51 tube to which this method has been applied
is a double-ring strapped tube, and the representative network of Fig.
4-23 may be used to analyze its behavior. The effect of the pins has
been represented by a division of the original unstrapped resonator into
two lengths of line I and A — ! having impedances K, and K,. The
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electrical lengths will be called 6, and 6;. The matrix of the resonator
section is now

[ cos 0; jK.sin 01] [ cos 6, jK, sin 02]

JjM, sin 6, cos &) {J

110
jM, sin 8, cos 8, (1100)

or

cos 0, cos ; — K,M, sin 0, sin 0; jK, cos 0, sin 8, + jK, sin 8, cos 6,
jM, sin 6) cos 0z + jM, cos 6, 8in 6; cos 6, cos 8, — K,M, sin 6, sin 6,

_ |a b].
—[c d] (1100)

Proceeding as before to evaluate the (u-v)-matrix for the section, this

¥1a. 4-23.—A 4-terminal network representation of one section of an inductance tuner.

matrix is now found to be

cos 2¢, + %%K. sin 2¢, — %Ebf sin 2¢,
1K, 20, + L9 K. cin 2 (1)
2D sin 2¢, cos 2¢, 3% s SIN 2¢,

Writing the determinantal equation and rearranging it gives

€OS Ym = COS 2¢p, — JI2<' sin 2¢'[a +d+ \/2({71 —d)? 4+ 1]-

The mode spectrum when the tuner is retracted is that of a strapped
tube with resonator impedance K,; when the tuner is inserted to the full
length of the anode the spectrum is that of a strapped tube with resonator
impedance K,. The mode order will be the same at both extremities and
there will thus be no mode crossing. The spectrum is transformed con-
tinuously as the tuner moves through the anode.




CHAPTER 5
OUTPUT CIRCUITS

By L. R. WALKER

6-1. Introduction.—The preceding chapters have treated the resonant
system of the magnetron in detail. It has been made clear that the
electron stream interacts with the field of the resonant system and feeds
power into it. This power is then utilized in two ways. One part, which
is dissipated in the form of copper losses, serves to maintain high fields
in the resonant system. As a consequence the resonant system stores
considerable energy and acts as the main frequency-determining element
in the magnetron. The residual power is fed to an external load, and
the circuit coupling this power to the external load is referred to as
the output circuit. Such a circuit may be considered as a 4-terminal
transducer which transforms the load impedance to a new level within the
tube. Broadly, the study of this transducer and its relationship to the
resonant system forms the subject of this chapter.

It is clear that in microwave systems, in which the dimensions of the
elements are comparable to a wavelength, the physical separation of the
resonant system and the output circuit must be arbitrary. There is a
similar difficulty in distinguishing between them on the basis of electrical
function. In an ideal situation the output circuit would store an amount
of energy negligible in comparison with that in the resonant system, and
it would then be perfectly justifiable to consider the output circuit as
frequency-insensitive in the neighborhood of any resonant frequency of
the system. Magnetrons that have been developed thus far fall into
two classes: (1) those with unstabilized outputs, in which the conditions
of the ideal case are approximately met, and (2) those with stabilized
outputs, in which the output circuit is deliberately designed to store
energy and may, indeed, store more energy than the resonant system.
The stabilized output is discussed extensively in Chap. 16 and will not
be treated here. In unstabilized outputs, the degree of departure from
ideal frequency-insensitivity varies greatly between various types of
output circuits, but, in general, the output circuit stores less than about
25 per cent of the energy stored in the resonant system. It will thus be
satisfactory to consider the properties of ideal frequency-insensitive
output circuits as a guide to the behavior of real output circuits. Any

specific case may then be examined for departure from ideal behavior.
167
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B ‘

=
Fia. 5'1.—Center-loop coupling.

Fie. 5-2,—Halo-loop coupling.

In practice a number of considerations impose restrictions upon the
output eircuit. The wavelength and power level of the tube determine
whether the external line will be waveguide or coaxial line. Construc-
tional details of the anode block, such as its strapping and the geometry




Sec. 5-1} INTRODUCTION 169

of the resonators, influence the form of coupling used between the

resonant system and the output line.

It is also clear that the output

F1a. 5-3.—Segment-fed coupling.

circuit must contain a vacuum seal and that, because some of the output
will be air-filled, it must be designed to avoid high-voltage breakdown.

Structurally, the main classifica-
tion of output circuits is that into
coaxial and waveguide types. The
coaxial-output circuit consists of a
length of coaxial line that varies in
cross section, either through tapers
or at discontinuities, and in which
the central conductor is fed from the
tube in a variety of ways. For ex-
ample, in loop-coupling, the end of
the central conductor is bent into a
loop and attached to some point cn
the outer conductor. The loop is
then placed where it will intercept
the magnetic flux in one oscillator.
Such loops have been introduced
into the resonator in the median
plane (center loop) as in Fig. 5-1 or
have been placed immediately above
the end of one resonator (halo loop)

I'1a. 5-4.—Strap-fed coupling.

as in Fig. 5-2. In unstrapped tubes the center conductor has been run in
above a segment and then attached to a point on one of the end faces of this
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segment (segment-fed coupling); in this case, the center conductor
may be considered to intercept flux passing between neighboring oscil-
lators or to be fed by the voltage along the segment (see Fig. 5-3). In a
somewhat similar type of feed applicable to strapped tubes, the whole
coaxial line runs above a segment, and the inner conductor then attaches
directly to a floating strap section (strap-fed coupling) as in Fig. 5-4.

At the load side, the coaxial line output may feed either an external
coaxial line or a waveguide. If the external line is coaxial, the connection
may be directly mechanical or by means of choke joints. In the latter,

F1a. 5:5.—Waveguide output.

the output circuit must include a satisfactory junction from coaxial
line to waveguide line. The vacuum seal is generally incorporated in the
coaxial line or in the waveguide feed, and the glass serves as a support for
the inner conductor.

Waveguide outputs consist of waveguide lines of variable cross
section, which are fed either by opening directly into the back of one
resonator or by communicating with it by means of an iris. The cross
section of the output is generally modified until it is equal to that of the
external waveguide, and the vacuum seal then consists of an iris window
placed between choke joints in this guide (see Fig. 5'5).
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In this chapter the discussion is confined mainly to an exposition of
the role played by the output circuit in tube operation and of the con-
cepts in terms of which its behavior is analyzed. The problems arising
in the design of output circuits for specific purposes are treated exten-
sively in Chap. 11. In general, the interesting properties of an output
circuit cannot be accurately predicted by direct calculation, but some
types of waveguide outputs, because of their geometrical simplicity,
form an exception to this rule, and an outline of the methods available
is given for this case. Many of the topics discussed are particular
applications of more general material developed in other books, but
the treatment in this chapter is adapted to the special needs of the
magnetron problem.

6-2. The 4-terminal Transducer.—In Chap. 4, it is shown (explicitly
for strapped magnetrons, but the argument is easily extended to cover
other cases) that provided the tube is oscillating in the w-mode, the
admittance of the resonator system measured at the junction of the
resonator and the interaction space is the sum of the admittances of
the N individual resonators. The latter admittances are also measured at
the slot openings, and the planes bisecting each segment are assumed
to be open-circuited. In this case, the resonator system, as far as its
total admittance at any resonator opening is concerned, may evidently
be replaced by N circuits in parallel, each having the characteristics of an
individual, isolated resonator. Because such a representation is valid
in the vicinity of the w-mode only, the individual resonators must be
treated as single shunt-resonant circuits described completely by a
characteristic admittance Y, and a resonant frequency wo. The admit-
tance of a single resonator is then jY,(w/wo — we/w). For the w-mode,
provided that the loading is not heavy enough to cause pattern distortion
and a resultant variation among the slot voltages, the electronic loading
will be the same at each resonator. The total electronic admittance will
thus be N times that of an individual resonator. If the mode is other
than a m-mode, an equivalent circuit admittance for the tube at any slot
opening may still be defined, but it is no longer the sum of the individual
values (see Chap. 4), and the vatiation among the slot voltages makes
difficult the definition of an equivalent electronic admittance (see Chap.
7). For simplicity, it will be assumed in the following sections that a
w-mode is being considered; the modifications necessary for other modes
will be the replacement of NY, by the appropriate equivalent charac-
teristic admittance of the resonator system.

For the purposes of output-circuit analysis it will be convenient to
make use of this representation of the resonator system and, simul-
taneously, to transform the load admittance to the opening of the reso-
nator into which it is coupled. The admittance of the coupled oscillator
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and its load are calculated, and then the load admittance is found by
subtracting the admittance of an unperturbed oscillator. Thus the
output circuit considered as a transmission path extends from the opening
of the coupled resonator to some plane in the external line which is
drawn to include all the discontinuities of the output circuit; the stored
energy of the output circuit, however, does not include that of the coupled
resonator. As an example, if a waveguide output couples directly into
the back of a resonator, the load impedance Z at the junction is effec-
tively in series with jwL, the inductance of the resonator, and appears
at the slot as an admittance 1/(jwL + Z). By restoring to the resonant
system the unperturbed admittance 1/jwL, the load admittance becomes
—Z/jwL(jwL 4 Z); this clearly involves the properties of the resonator,

It is now necessary to develop some properties of 4-terminal trans-
ducers that will be useful in analyzing output systems. One representa-
tion of a transducer is particularly helpful with the model being used.
For any 4-terminal network

Ve = Zools + Zoilh
and 1)
V1 = Z21Iz + ZuIl,

where Vy, I, and V,, I, are the voltages and currents on the right- and
left-hand! sides of the transducer respectively. Thus, if one writes

Ve=20; and I, = Y,V,

where the arrow notation is used to denote the direction in which one
is looking, there follows

Zols = Zuls + ZuY1V)
and

Vl = ZZII2 + Z11Y1V1-
Eliminating V; and I,

(Zs ~ Za)(1 — Zu¥) = Z4Y,, @)
or, because ?1 = —i;:,
Z3
— 2 2
Zz = (Zzz - g—n) + :_ZLI—!
11 Y + il

1In the following sections the subscript 1 will be used to distinguish quantities
measured on the left-hand side of a transducer, and it will further be assumed that
this is the generator side. Similarly, the subscript 2 will distinguish quantities on
the right-hand side, or load side, of the transducer.
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which may be written
2

Eg = Zz + ;_—71__, (3)
Y.+ Y,

where Z,, Y, and n are independent of Z; and Y, and characterize com-
pletely the transformer properties of the network. Because

2—2 = "‘Zz and ?1 = —;1,
n2

Y] = Y1+_'—“—1 (4)
Zy+ Zy

the transducer may be represented by the network of Fig. 5-6 where
Z,, Y1, and n are complex; for lossless networks Z, and Y, will be imagi-
nary and n real; for networks that

are slightly lossy, the real parts of a1

Z, and Y, and the complex part of 5 ) % — =<

nwill be small. The three quanti- fi Y g E ff_

ties are, in general, functions of fre- T . z,
o— —0

quency; the assumption of the
“ideal” output is that they are ¢ 56—Schematic reprosentation of a
frequency-independent.

It is also useful to have a representation that puts in evidence the
relation between the reflection coefficients measured in transmission lines
of characteristic impedances K, and K, attached to the left- and right-
hand sides of the transducer (see Fig. 5:7). Such a representation forms
the basis for most measurements on microwave transducer properties.
By employing the usual definition of voltage reflection coefficient one
may write

Ez =K, 14 gz
1 - q2
and
o-ll-u
"1+ ¢
where ¢ and g: are the reflection coefficients looking to the right along
each line. Substituting in Eq. (2) and using Zz = —Ez, one obtains,
after division by KK,
(1 + Q1 _ )(1 + q: Zzz) + Z,, = (5)
1-—- q 1-— q
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Equation (5) implies a relation of the type

1+ 191 + CaQ2 + dQ1(12

= 0. (6)
If we now write
Cy = %—7 cy = — fb—) d = —eortom,
as is always permissible, Eq. (6) becomes
—_ b L'Lz—-.
g1 = e ™ ——————+ ¢ q_z, @
1 4 be%q,

This representation is of particular value when the transformer is lossless.
In this case, Zy1, Z:1, and Zj; are all imaginary, and an examination of
Egs. (5) and (6) shows that a4, a»

o——o———1 . - .
Generator = - *load  are now imaginary and b is real.
side 1 92 side This result might have been ob-
Yo 7 X:  tained in another way. Equation
o———O0—f —o0———— (5) indicates that the relation be-

F1a.” 5-7,—Schematic representation of a tween Q1 and Q2 is a bilinear one.
4-terminal transducer in terms of reflection .
coefficients. Because |¢| < 1 for a passive load

and |¢| = 1 for a purely reactive
load, a lossless transducer must transform the circle |g| = 1 into itself and
the interior |g| < 1 also into itself. Bilinear transformations with this

property are known to be of the form?
— B + qzeid, ,

q1 = €& = (8
1 4 Bqzei=

where a3, a2, and B are real.
Because of the frequent necessity for transforming through a given
transducer in either direction it is useful to have the left-to-right analogue
of Eq. (8). Using the system of notation shown in Fig. 5-7, one writes

by analogy with Eq. (8)
POl e ol i

1+ B e’

Using the relation that is inherent in the definition of ¢

(9)

1A straightforward account of the bilinear or Mébius transformation, which is
the simplest of all conformal transformations, is given in C. Carathéodory, Conformal
Representation, Cambridge, London, 1932. Since all impedance and reflection trans-
formations belong to this class, a knowledge of its properties is very illuminating.
Equation (8) is derived from tbid., p. 17, by multiplying his equation by ei*:~= and
writing 2z, = —e~i%,
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— e

qq = 1, (10)
one may show ‘
g =8, (11a)
ay + a; =7, (115)
ar+ oan = (11¢)

Because 8 = #’, the prime may be dropped. Equations (8) and (9),
of course, embody the same physical properties. It should be noticed
that 8, a1, and a; are dependent upon K, and K3 as well as the internal
properties of the transducer. A physical realization of Eq. (8) or (9)
may be found by writing it as three equations. Thus,

9y = €y, (12a)
and
;;’=ﬁ+; or 1+q;’=(1+8>1+q;; (12b)
—»} —_ 1 —_— —_
1+ Bg, 1~ gy Bl—q;
and
g1 = giein, (12¢)

The transformation embodied in Eq. (12a) is that due to an electrical

length ;z of line of characteristic impedance K,. Equation (12b) repre-
1
(K2 1-8 /;"
K, 1+8)

> -0
-ah. &, % a3 K,
O-

—Q
F1a. 5-8.—Equivalent circuit of a 4-terminal transducer.

sents passage through an ideal transformer, as may be seen by intro-

ducing Z;’ and Z;, the impedances corresponding to ;’2’ and _qz Then,
from Eq. (12b)
z; (1 +6\Z _ , 7
Z-(IEDE-F 020
The turns ratio of the ideal transformer is [A(Ki/K))}*%. Finally Eq.
(12¢) indicates a further passage down a line of characteristic impedance

K, and electrical length -—;1. Thus, the circuit of Fig. 58 represents
the whole transducer connected to lines of impedance K, and K.
The geometrical significance of Eq. (8) is shown in Fig. 5'9, which
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represents the motion of two given points in the g.-plane under the three
stages of the transformation. The first and last transformations cor-

respond to rotation through angles a; and —a; respectively. The
passage through an ideal transformer is a transformation that leaves

.
N

F16. 5-9.—Analysis of the action of a general 4-terminal reflection-coefficient transducer

into three elementary operations. Transformations (a) to () and (¢) to (d) correspond
— —

to rotation through angles a2 and —a, respectively. The transformation (b) to (¢) may be
termed a compression and refers to the transformation through the ideal transformer.

Argl(1 + ¢)/(1 — g)] = Arg{(1 + ¢))/(1 — ¢})] according to Eq. (12b).

But Arg[(1 + ¢)/(1 — ¢)] = constant is the equation of a circle through
the points +1 and —1; such circles are thus transformed into them-
selves. Points lying on 2 common circle orthogonal to those which pass
through 41 and —1 still lie on such a circle after transformation, since
the transformation is conformal. This type of transformation may be
referred to as a compression. It is important to note that it is only at
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this stage that the size of figures and the magnitude of reflection coeffi-
cients are changed. The parameter A = (1 4+ 8)/(1 — 8), which may
be called the principal transformer constant, mainly determines the

properties of the transducer. One may note that ¢,(0) = fe~= and

;;(0) = Be";z are the reflection coefficients looking into each side of the
transducer when the remote side is matched. Since these points must
fall within |¢g| = 1, then 0 £ 8 £ 1and 1 £ A,

The transducer constants could clearly be found by measuring ;1(0)
and (;(O), but it is often difficult to match each of the lines, and another
method is preferable. Suppose that ;2 is set up by a reactive load; then
;2 is of the form _q.z = e/%:, where ¢, is real. Since the transducer is

lossless, one must have ¢ = e#:. Putting these values in Eq. (8) and
reducing one finds

tan %ﬂl = A tan TZ‘}E (13)

Practically, ¢, (or ¢,) may be found as a function of ¢, (or ¢;) by moving
a shorting plunger along one line and measuring the position of the asso-
ciated short circuit in the other line. If ¢; (or ¢2) be plotted against
¢2 (or ¢,), an S-shaped curve symmetrical about the line

¢l+‘11: ¢2+;2

is obtained, repeating itself as both ¢; and ¢. increase by 2r (see Fig.
510). From Eq. (13) one has

¢ +21 do, b2 +_O:2
2 1 ddy 2 P2 T Q2
sec 2 dée A sec 5
or
o2 + aq
g $2 T a2
dé, A sec 5 AAZ — 1)
dos s = A — (19)
2
1 + A? tan? &7; az A? + cot? %‘”

From Eq. (14) it follows that d¢:/d¢. < A, the equality occurring at

¢+ az = ¢1 + oy = 0. Similarly, de¢./dé: < A, and equality occurs

at ¢g -+ @2 = ¢1 + a1 = n. Thus, the transducer parameters may be
found from the maximum slope of a ¢; vs. ¢, or ¢2 vs. ¢; plot and the
location of the point at which the maximum slope occurs.
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5-3. The Q-circle and the Rieke Diagram.—This section will be con-
cerned with the behavior of a resonant system that is connected to an
external load by means of an ideal frequency-insensitive output circuit.
The results that are derived may be applied to real output circuits
provided the assumption of frequency-insensitivity is not seriously
violated. It will not be assumed that the output circuit is lossless.
Making use of the representation in

, which the resonant system and load are

/ shunted across a resonator opening

/ and also of the representation of the
output transducer shown in Fig. 56,
one has the over-all transducer of Fig.

I, - PR

/

-a, 1< Slope YA = - . ]
/ 5-11, where the Y; and Z, retain their

. previous meaning. As a consequence

-ay Slope of the physical overlapping of the

451& 1 resonant system and the output circuit,

&, w-a, ¢— it is not possible, in the absence of

Fio. 5-10.—Representative S-curve independent measurements of lead

for the computation of the transducer loss made on the isolable part of the

parameters. output circuit, to separate the so-

called “tube” and “lead’’ losses. Thus, the model uses a lossless shunt

circuit for the resonant system and incorporates the losses of the latter
with those of the shunt element Y; of the output circuit.

A :1 C

o + " z, o— -0
Yl - T % yl é Z; a; K

o— 4 o

B D

Fi1a. 5-11.—Representation of resonant system and output circuit.

1t will be supposed that the load impedance Z, and its reflection
coefficient g2 are set up in a line of characteristic impedance K. A rela-

tion will first be derived between Y,(0), the admittance looking into the
resonant system in the direction of power flow, when the external line

is matched, and ¢., the reflection coefficient looking from the terminals
CD of the transducer into the “‘cold” tube which contains no electrons.
Writing jY, = jNY.(w/we — wo/w) for the admittance of the resonant
system, one has

¥:0) = j¥o + Vi (18)

nﬂ
TR+ 7
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and
_oldg n?

Eliminating the frequency-dependent term jY, 4 Y, between Eqs. (15)
and (16) gives

< 2
KL‘*;Q_Q_E=Z2+_’ n ——
1 —-4q Yl(O)‘m
é—-l-l- n*/K
- Y1(0) — n%/(Zs + K)
c_Zz n?'/K
T(+1+—’

Y),(O) - 'nz/(Zz + K)
Z, o n? Z,— K
(—K - 1) Vi + % (1 -55%)

Zz = n? Z;+K
<f+1)Y1(0) +—K(1 _Z2+K> .

= Zz - K + 2Kn2 1
Z2 + K (Z2 + K)2—1;l(0)

-+ an
Y,(0)
where
Z,~ K
go = Z: - (18a)
and
_ 2Kme
4=+ e (180)

But. if the transformer be frequency insensitive, }—;,(0) is of the form
o _ n? . n? . w _ wo
Yl(O) = Re (Yx + m) + JI’m (Y1 + m) + ]NYr (;*0 :)
or!
ﬁ@=m+wruwn? where 8 = (& — wg) K wo. (19)
0
Thus, }—”1(0) is represented in the complex plane by a straight line of

the form G. + jB(w). It will be supposed that the assumptions of
! It may be noted that the frequency shift due to the load is given by

(wn=~(§%)m.
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frequency-insensitivity and freedom from extra modes in the resonant
system hold good over a frequency range sufficient to make B(w) > G,.

Substantially then, B(w) runs from — « to + «. Then [;1(051—‘ is a
circle of center 1/2G. and radius 1/2G.; and from Eq. (17), 21_5 is repre-

sented by a circle of center go + (4/2G:) and radius |A|/2G;. It has
been proved, therefore, that the locus of input reflection coefficients for
the ““cold’”’ tube, as a function of frequency, is a circle. This is known
as the Q-circle.

From the definition of loaded @ as Q. one has

NY

(20)
Thus,
28w
(0) =G, +]BL +1NY —
=GL(1 +igh +JQL25w)
L [1 + 1'QL— [0 — (50’)1‘]] (21)
wo
or
20, M—_wo(aL)l’ = tan Arg ;1(0) (22)
= tan Arg — 4 = (23)
=9

making use of Eq. (17). Considering Fig. 5-12 which shows a possible
Q-circle and a series of observed points gi(w1), g2(w2), ete., it is plain that
Arg A/ (; — ;_o) is the angle between the line joining ;1_0 to a point ;on

the circle and the diameter of the Q-circle passing through ;1_0 Thus, if
any line pp’ is drawn normal to the diameter, the diameter and the line

through ;and go will intercept a segment on pp’ proportional to tan

Arg A/ (; - ;o). From Eq. (23) the length of this segment varies linearly
with 8w and, hence, with w. In practice, then, if the reflection coefficient
has been measured at a series of frequencies and a @-circle drawn through

the points, the diameter through ¢o may be drawn and the series of the
segments on a normal to the diameter measured as above. If the seg-
ment length is then plotted against frequency, the slope of the resultant
straight line leads, using Eq. (23), to a value for Q;. Strictly speaking,
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the value of w, is not observed, but it is usually satisfactory to use a value
of » in the neighborhood of that for which |¢| is a minimum. As has
been emphasized, this method of determining @, is idealized, presupposing
frequency insensitivity of the output circuit and the absence of secondary

resonances in the resonant system. It will be possible to locate go, the
off-resonance point, with a sufficient degree of accuracy provided that
the assumed ideal conditions hold over a frequency range sufficient to

make &w — (8w)r > (wo/2Q:). Provided that ¢, has been located
correctly, the method is useful be-
cause it utilizes all the points
measured and, by means of the
linearity of the intercept-fre-
quency plot, tests their internal
consistency.

Once the Q-circle has been de-
termined, it may be used to deduce
a number of properties of the whole
system. The circuit efficiency at
match, defined as the ratio of
power delivered to the load to that
fed into the system at the resonator
openings, may be shown to be given by the radius of the @-circle. Thus
in Fig. 5-11, if V' is the voltage across AB and I, the current through CD,
then

Fia. 5:12.—The @-circle.

lKIz + Zolo| _

1l 29

But the input power is G:|V:|?, and the power to the load, K|I,|2, so
that the circuit efficiency at match or 7.(0) is

_KILE _K| |
w0 =@ vE T Gl F z2|
_ 14}
=g 25)

It is customary to define a quantity Qg the external Q, which is 2r
times the ratio of the energy stored in the system to the energy dissipated
in the external load per cycle. In accord with this definition, at match,

Q:0)
Qs = 72.0)”

where Q.(0) has been written rather than Q. to indicate a value measured
at match. It is, of course, possible to define Q.. values for any value of

(26)

¢:, the load reflection coefficient. Provided that the system has not
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been pulled by the load from its unperturbed frequency, one has

Similarly
Qs = 249 9.0 L @)
GL(qL) ﬂc(qL)

The behavior of QL(;,,) and 7.(qz) as functions of ;L are discussed below.
The pulling figure of the operating magnetron may be defined as the

maximum change in frequency F(g,) of the system when g is varied

over all phases with |g:.}! = ¢,. Since the pulling figure will depend upon
the susceptance of the electron stream, it is necessary to make a simplify-
ing assumption about the behavior of the latter in order to deduce the
pulling figure from the Q-circle. Suppose that the electron admittance is

Y. = G, + jB., the load reflection coefficient is ;L, and the load imped-
ance consequently is K[(1 +- ;L) /(1 - ;b)]; then

2
0=G,+jBe+1'2NYri—‘:+ ) G P — (28)

Z, + k1T
1 — gL
Making the substitutions

Zo=k1Te, o Gt KR, 2K4

K -
1—q 2 (1~ )
Eq. (28) becomes
0=G+iB+2Ny, 2 ¢y 4 A L2l )
(1]

1 —gqol = giq0
Using the symbol D to denote the variation in a quantity as the phase of

-
q: is varied, one has

0 = D(G. + jB) + 12N, — D(sa) + D (—A-: —1—‘j—i> (30)
0 1 — g0l — quqo

The assumption to be made about the electron admittance is that, for
small changes, D(B.)/D(G.) = tan a« = a constant. Multiplying Eq.
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(30) by e gives

0= D(G’) _m+D<Aem 1—q,,>
1- Qo 1 - q19o,
or
0=2N —g—;cos aD(8w) + DIm( Aer Q) (31)
1 - qul — q190
Thus,

A .
_e—Ja —
Flgy = Del) o Lo |2 Lm0
i i 1—g1—qq

_ fosec a Ae—ia 1
R N <WL 1_:> (32)
o> — Qo

(752

The bracketed expression is Ae—72/2G. times the inverse of a circle of

center —¢qo and radius 1/|q,| = 1/g,. Considering the inversion of the
two points on a diameter of this circle which passes through the origin,
which two points, thus, still lie at the extremities of a diameter after
inversion, the new diameter of the inverted circle is seen to be

1 _ 1 _ zq;l _ 2qp )
' = ol G lnl G = lal? 1 — glel
Thus,
DoeIm 1422]“1% = liG| 245 _ 2’70(0)31’ 33)
oo 1= glgl? 1~ gllgl?
qr
and

Flg,) = Jom.(0) sec a 2¢p

L QT
_J Ze;’ & 2 (34)
1 — g2lqof?

The value of F(q,) is seen to be determined from the @-circle save for
the term sec «, which is of electronic origin. The expression found by
setting @ = 0 is known as the ‘“‘cold’ pulling figure and represents the



184 OUTPUT CIRCUITS [Sec. 5-3

effect of the oscillating and output circuits upon the total pulling figure.
The pulling figure ordinarily used to describe magnetron performance
gpecifies a value of ¢, of 0.2.

The unloaded €, Qy has not been mentioned thus far. In normal
usage, this is a loose term intended to describe the tube losses. Because
of the difficulty of separating the tube and lead losses there is some
ambiguity in defining the unloaded Q. If the lead and tube losses are
grouped together, then, with an obvious notation

GL = Gx + Gu,
1 _1 .1 N
"t ¢ YTi—,® (35)

Alternatively, the lead losses may be separated as far as possible by
defining Qy as 2r times the ratio of stored energy to the energy loss per
cycle in the tube and lead when the latter is minimized with respect to
variations in the external load. The result derived in this way is

| (g4)

1 1,1 4]
he——— b

11l Rela Y (36)
1 — |gof?

where (q_oA) is the scalar product of :1_0 and A. The expression may be
evaluated from the Q-circle if necessary.

The Rieke Diagram.—1t has been explained in Chap. 1 that the Rieke
diagram shows the power delivered to the load and the frequency of

the system as functions of the load reflection coefficient ¢.. The com-

plete theory of the diagram is given in Chap. 7. It is necessary here to

discuss only the relations between the Rieke diagram and the Q-circle.
According to Eq. (29),

o 3 -7
G~ jB. = Valg) = 2Ny, 2 v 4 A L2 8 g
0 1-— o 1 - qrqo
In Chap. 7 it is shown that the electronic efficiency is a function of G,
only, provided that the patterns are not distorted by loading. This

being the case, the contours of constant electronic efficiency, of constant
power transfer by the electrons, of constant G, = —Re[-l;l(;)], and of
constant QL(Z{L) =N Y,/GL(;L) are identical. In the ?—plane, these
contours are straight lines of the form Re(?’) + jB = G + jB, where B

is variable. These lines must transform into circles in the g¢. plane;
and since each line contains the point at infinity, all the circles must
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contain the transform of this point. From Eq. (29) the required trang-
form is ;L = 1/qo. Now, in determining the Q-circle, Y, = — ¥, = 0,
and thus G = 0 for the Q-circle. But since g¢ = 1, the circle in the

¢-plane, corresponding to the Q-circle in the g¢-plane, is the inverse of
the former. Thus, the inverse of the @Q-circle is one of the contours
of constant Q.; namely, Q. = 0. The whole family of contours of
constant Q. is evidently a family of nonintersecting circles passing

through 1/go and tangent at that point to the inverse of the Q-circle.
Figure 5-13 shows the disposition of these circles.

Without information from operating tubes about the variation of
B. with @., one cannot deduce the frequency contours. The assumption
used in deducing the pulling figure cannot be used because it is true only
for small variations of G.. 1If it were universally valid, the frequency

contours would be a set of circles also passing through 1/¢,, intersecting
the Q. set at a fixed angle /2 — a.

In order to deduce electronic efficiency as a function of load from the
Rieke diagram, it is necessary to find out how the circuit efficiency varies.

Suppose that the load reflection coefficient is gz; this may be thought of
as produced by a lossless transducer, and the presence of the latter will

not affect the circuit efficiency. If ¢, = |g.|e’?, such a transducer is
represented from Eq. (8) by

PO i S 37)
1 + |gilgs
or, from Egs. (9) and (11),
— qlejg: qu_l - ___'1_ + qul—l—)_ lqil. (38)
1 — lg:le’®q: lgzl 1 — lgule®q

The radius of the @-circle measured on the load side of the transducer

gives the new circuit efficiency, 7, (q_z:); but this Q-circle is the transform
of the normal @-circle by Eq. (38). If the @-circle is written in the form,

ro + 1. (0)e*, the diameter of the corresponding ¢ circle is
1.(0) (1 — 1g:[?)
1L — rolgele’®* — 7.(0)?]qu|?

and this equation shows the variation of circuit efficiency with g;. The

ne(g) = (39)

contours of constant 5.(g.) may be found by writing Eq. (39) in the form
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[Lf) +r— m(ov] [gul? — 2ro cos 6lgs| + [1 - 1@]
ﬂc(QL) ﬂc(QL)

= ¥(lg:), ) = 0. (40)

It is always possible to find three real quantities ¢i, g2, and N where ¢,
and g¢. are independent of T,CGL) such that

lgae’® — qil* = Nlgwe* — guf? = ¥(lgul, 6) = 0. (41)

Equation (41) is the equation of a set of coaxal circles having the points
¢: and ¢, lying on the common diameter of the @- and unit-circles, as
limit points. The set may be de-
termined in practice by identify-
ing two of its members, namely,
the unit circle and the inverse of
the @Q-circle. The former corre-
sponds to 7, = 0 (a reactive load),
and the latter to n, = — « (forin
this case ¢, = 0 and powerisbeing
fed into the system). In Fig.5-13
some members of the coaxal set
are shown to indicate their relation
with the @-circle and constant @,
contours. The presence of lead
loss causes the sets of constant 7,
Fie. 5-13.—Contours of constantloaded @  and constant @, circles to have
ord constane, oot efiiene Sold IS gifferent  common  diameters
Thus, when there is lead loss, the

contours of constant over-all efficiency and the contours of constant load
power in the Rieke diagram will not be circles nor will they lie symmetri-
cally about a common axis. It can also be seen that the contours of con-

stant Qz(q.) = Qr(qz)/7.(qr) Will not have a simple form.

Finally, it is of some practical interest to deduce from a given Rieke
diagram the effect of inserting a lossless ransducer between the tube and
the load. The problem is to find the contour in the reflection plane into

which the transducer converts the pulling circle |gq.| = ¢, and from the
given Rieke diagram to find the frequency range spanned by the contour.

If the transducer is specified by the fact that it transforms ¢, = 0 into

—

g2 = qr, the equations of the transformed circle are quite involved.
However, if only an estimate of the new pulling figure is required, the
problem is simpler. For since any transformation has been shown to
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change the size of figures only in the ‘compression’ stage, the size
of the pulling figure can be altered only at this stage. But the compres-
sion transforms all circles through +1 and —1 into themselves, so that
if two circles are drawn through +1 and —1 {o touch the pulling circle

lgl = ¢z, the transform of this circle will still touch the pair of circles
after compression. Thus, the size of the new pulling circle is fixed as a
function of its radial position (see Fig. 5:14). To a first approximation,
it may be assumed that the trans-
form of the center of the original

pulling circle (;: 0) is the center
of the new pulling circle (_;1 = q:)

and, since ¢, 13 known, the size of the
new pulling circle is known.

5-4. General Considerations Con-
cerning the Output Circuit Prob-
lem.—In the last two sections the
chief concepts used in describing
output circuit behavior have been
introduced, and the performance of Fte- 5'14-—1‘“‘““;;'32“0“ of the pulling
a resonator system connected to a )
load has been interpreted using the device of an ideal output circuit. It
has been shown that most of the quantities involved in the relations
between tube and load may be deduced from the Q-circle and the Rieke
diagram. The quantity Y, which is needed for a complete analysis may
be either calculated or obtained from  measurements together with inde-
pendent experiments on the output circuit. Thus, it is possible in some
cases to measure directly the impedance level at the junction between out-
put circuit and resonant system. As has been already indicated, the
S-curve technique (see Fig. 5-10) is of great value in these measurements
on isolated output circuits.

It is now desirable to discuss in a general way the functions of the
output circuit in practice. The relationships among loaded Q, @i, the
pulling figure F(g,), the equivalent admittance of the resonant system
NY,, and the electronic efficiency ., which are mentioned in Chap. 7,
form the foundation for determining output circuit requirements. One
has the relations

Y,
G—L:
,
Flgn =legee 2, (420)
1 — gjlgol®
® = Qm0), (420

Q.=N (42q)
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together with the empirical information that electronic efficiency is
almost invariably an increasing function of ;. In almost any use of the
magnetron, a definite degree of frequency stability is desired in the tube
itself. This means that an upper limit is set upon the pulling figure. A
compromise must always be effected between this requirement which,
from Eqgs. (42a) to (42c), sets an upper bound upon G, for a given tube
and that which demands a high electronic efficiency or a high G;. To
some extent this dilemma may be resolved by redesigning the resonant
system to increase Y,, which permits G to rise, while . remains con-
stant and Q= and F(g,) also remain approximately constant. However,
this solution eventually breaks down because the additional capacitance
introduced to increase Y, lowers the circuit efficiency, and a point may
be reached at which the over-all efficiency n.n. starts to decrease. It is
clear also that the prescribed pulling figure will be affected by the operat-
ing wavelength. A constant pulling figure at all wavelengths would
imply a Qg proportional to frequency and thus a much smaller G, at
short wavelengths. The values of pulling figures that have been accepted
as suitable compromises in unstabilized tubes are 10 Mec/sec at 3000
Me/sec, 15 Mc/sec at 10,000 Me/sec, and 30 Me/sec at 30,000 Mec/sec.
These figures correspond to @z values of about 125, 280, and 420 and,
using typiecal values of 7.(0), to Q. values of 110, 200, and 300.

In different resonator systems, the admittance constant NY, might
be expected to vary considerably, since it is given by NY, = N(hyo + V),
where k is the anode height, yo is the admittance of the unstrapped
resopator per unit length, and Y, is the strap admittance constant. The
value of yo is a function only of the shape of the oscillators. In practice
the factors compensate to some extent. Rough ranges for the values of
NY, taken from Table 10-2 (NY, = Y,) are 0.04 to 0.20 mho at 3000
Mec/sec, 0.15 to 0.60 mho at 10,000 Mc/sec, and about 0.3 mho at 30,000
Mc/sec. Using Eq. (42a), the resistance that must be shunted across
the resonator opening to give the normal Q. values is found to be 500
to 2500 ohms at 10 cm, 300 to 1300 ohms at 3 ¢m, and about 1000 ohms at
1.25 cm. It is plain that for the types of magnetron which have been
designed thus far, this resistance falls generally within a range of 300 to
3000 ohms. It follows that the principal problem of output design is to
supply this resistance by suitably connecting the resonant system to a
matched load line whose impedance in the case of coaxial line is of the
order of 50 to 100 ohms and 200 to 400 ohms for waveguide. The
impedance K will be used for waveguides, defined such that the power
flowing in a matched line will be given by V*/K, where V is the line
voltage.

The output circuit not only should produce the desired resistance at
the ‘assigned frequency but should do this without simultaneously

e
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coupling in excessive reactance. The principal hazard attached to
coupling in large amounts of reactance lies in the possibility of pattern
deformation. The susceptibility of a strapped system to pattern dis-
tortion has been discussed in Chap. 4, where 1t is pointed out that to a
first approximation distortion is produced to the same extent by either
reactive or resistive loading. A criterion for pattern distortion is given
by Eq. (57) of Chap. 4, in which it is shown that the amplitude a.. of the
mth mode excited when a w-mode is loaded is given by

YieaKs sN
mir Ay

|2am| = m3 1, (43)
where s is the strap length, A, the m-mode wavelength, K, the strap
impedance, and Yi.: the load admittance at the slots. The symbol
mis equal to (N/2) — n, where 2n is the number of nodes in the r-f pattern
around the interaction space. Equation (43) may be used to estimate
the permissible value of Yi. It will bé noted that the latter depends
upon the strength of coupling between oscillators and not uniquely
upon Q.. In most strapped systems it appears that distortion does not
become serious until @, is perhaps about 30. The normal operating
Q. will be many times greater than this, and it is thus clear that the
coupled reactance may be at least as large as the coupled resistance
without causing difficulty.

It has already been emphasized that usually output circuits which are
not deliberately stabilized store a relatively small amount of energy
compared with that in the resonant system and that consequently they
may be considered as frequency-insensitive over a frequency range of a
few times wo/Q:, where w, is the resonant frequency. It is generally
considered desirable, even in fixed-frequency magnetrons, that the output
cireuit should exhibit considerable frequency insensitivity over a band of
perhaps 20 to 30 per cent above the r-mode frequency. In this connec-
tion frequency insensitivity implies simply that the transformer properties
of the output circuit should be slowly varying functions of frequency.
This requirement of broadbandedness guarantees that the mode immedi-
ately below the m-mode in wavelength will be loaded to an extent com-
parable to the r-mode, and it is an insurance against the possibility of an
undesired mode being favored in the starting process because its r-f
amplitude exceeds that of the x-mode. In tunable magnetrons, the
broadbanding of output circuits constitutes a special problem. In
this instance the objective is usually to obtain a nearly constant pulling
figure across the tuning band. From Egs. (42a) to (42¢) it is seen that
this will, in general, require G to vary across the band which may perhaps
have a width of 20 per cent. The required variation of G will be of the
same order. The problem thus reduces to the empirical one of arranging
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matters so the slow change of the output circuit transformer constants
shall be in the right sense to keep G1, at an appropriate value. In this
task the use of measurements on the isolable part of the output circuits
is indicated.

One relation between the output system and resonator system which
has been mentioned in Chap. 4 may be briefly referred to here. As the
previous paragraph has indicated, it is of some importance to couple out
all those modes which the electrons are likely to excite. For this reason,
devices such as strap breaks have been introduced for the purpose of
distorting the r-f patterns in such a way as to cause both components of
an otherwise degenerate mode to couple to the output resonator. There
is thus a problem, not specifically an output circuit problem, concerned
with the relative disposition of discontinuities (strap breaks or tuners)
and the output circuit.

The fundamental problem of coupling the load line into the resonant
system may be solved in an indefinite number of ways. A useful dis-
tinction is that between high- and low-level impedance circuits. In
the former the desired high impedance is introduced by the almost direct
shunting of the load line across the opening of a resonator. This type of
coupling is achieved in the ‘‘strap-fed” coupling shown in Fig. 54,
in which the inner conductor of the coaxial line is tied directly to the
floating section of one strap. Thus, except for a slight transformer effect
due to the line length of the strap, the coaxial line is shunted across the
resonator opening. In a high-level output circuit the impedance trans-
formation is confined to the external line and may be relatively small.
In general, the transformation required will be to a higher-impedance
level. At the opposite extreme lie the various types of low-impedance
level circuits which include most of the familiar designs. In such cases
the external part of the output circuit is introduced in series with an
oscillator at a high current point. If the output impedance at this
point be Z and the resonator inductance L, the shunt impedance added
by the output at the slot is roughly wiL?*/Z (for wel >> Z). Thus, the
resonator acts as a transformer to raise the low impedance Z to the
requisite high level. The impedance Z may be introduced in a number
of ways. In a waveguide output it may be a direct series element if the
output communicates with the resonator by means of a slot in the back
of the resonator. In a coaxial line the impedance Z may appear as a
result of the mutual coupling between a single resonator and a loop
connected to the output circuit. For these low-level output ecircuits
the external part of the circuit must effect a substantial impedance
transformation downwards. For, as has been shown, w2l.2/Z runs from
300 to 3000 ohms, while w,L is of the order of tens of ohms; thus Z must
be of the order of 1 ohm. Between these extreme types of output circuit
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it is possible to imagine intermediate forms which have been little
explored. The output impedance of such forms is introduced as a
series or as a shunt element at a position of intermediate voltage and
current in the resonator.

6:6. Coaxial-output Circuit.—The purpose of this section and of
Sec. 5-6 is to discuss some particular forms of output circuits in a general
way. No attempt is made to give design formulas except in the case
of one type of simple waveguide output. Methods of analysis for other
types of circuits are indicated.

Center- and Halo-loop Circuits.—In these circuits, a loop intercepting
the magnetic flux of one oscillator (see Figs. 5-1 and 5-2) feeds a coaxial
line. The coaxial line contains a glass vacuum seal which also supports
the inner conductor. To minimize breakdown across the glass, the glass
usually takes the form of a length
of tubing sealed to the inner con- < )
ductor at one end and to the outer
conductor at the other. The cross

section of the line will usually have d S
discontinuities at the seal, since € "‘.l’[ T %
the glass is butted against either a LI

copper featheredge or a thin-walled
Kovar cylinder. There is thus
formed a section of line partially Fm'35;Li';ﬁ::ﬂp}iegffﬁ??ﬁ33;5‘52 used
filled with coaxial dielectric. Con- )
nection to the external line is made either directly by mechanical contact
and choke joints as in Fig. 5-1 or as an antenna feed for waveguide as in
Fig. 5:15. The circuit of Fig. 5-16 represents the electric behavior.

As has been already mentioned, this type of output circuit produces
alow series impedance at CD in series with woL, the inductance of one hole.
The main part of the transformation is effected by the loop. The
“external transformer’” EFGH which contains the glass, seals, beads,
choke joints, or coaxial-waveguide junctions performs a relatively small
transformation. This condition is desirable because the standing wave
in the relatively irregular, air-filled line is thus kept at a minimum. It is
rarely possible to calculate the impedance transformations in such a
line with confidence, but they are easily found by measurements either
on output circuits from which the tube and loop have been removed or
on smaller sections of the output circuit. By empirical means or by
calculations on the regular portions of the circuit, the required properties
may be obtained by a process of correction. Usually an effort is made
to keep the principal transformer constant at all sections as well as the
over-all constant close to unity; this gives a section with low-energy
storage everywhere and hence a low-frequency sensitivity.
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To a rough approximation the loop and the hole act as the primary
and secondary of a transformer, but the representation is not particularly
valuable, since the estimation of the turns ratio is far from simple. This
arises from the difficulty of calculating the effective loop area. A crude
approximation uses the mean diameter of the loop to give the area, and
this may be used to obtain a rough idea of the transformation properties
of the loop if the coupled impedance is calculated from wjM /R, where M
is the estimated mutual inductance of the loop and hole and E is the sum
of the loop reactance and the impedance seen at AB. The transformer
constant is clearly very dependent on the size of the loop and, in halo
loops, also upon the height of the loop above the anode block, since the
fields fall off rapidly in the end space. Experimentally it appears that
the loop acts as a rather frequency-insensitive transformer.

In order to avoid coupling-in much reactance, it is desirable to
arrange the properties of the external transformer so that the loop
reactance is effectively canceled by a residual reactance at AB. The

A L [od E ¢
Loop External
NC {N-DL trans- trans- K
former former
c f o "
B D F H

Fia. 5-16,—Schematic network of a loop-coupled output.

loop reactance may be considerable. It is accurate, in fair measure, to
find the loop reactance for halo loops by assuming that the loop and its
image in the anode block form a transmission line of length equal to the
developed length of the loop. This length may approach a quarter
wavelength for halo loops, leading to large reactances at AB. The
estimation of reactive effects for center loops is difficult. However, if
the loop transformer CDEF is represented by a network of the type of
Fig. 5-6, the series element Z; may be found by transforming the off-reso-
nance point of the @-circle taken on the complete tube, back through the
transformer EFGH. Presumably Z, represents mainly the loop react-~
ance, and this may be balanced out by redesigning EFGH to produce the
conjugate reactance at EF. The shunt element Y, of the transducer
can be found only by measuring the resonant frequency of the system
with the output (including loop) removed and thus determining the
pulling due to Y, directly.!

1 For an exhaustive discussion of a broadbanded halo-loop output having a wave-

guide junction, see J. C. Slater, ‘‘Properties of the Coaxial-waveguide Junction in the
725A and 2351 Output,” BTL Tech. Memorandum No. MM-44-180-4, Nov. 20, 1044;
H. D. Hagstrim, “On the Qutput Circuit of the 2,51 (Tunable X-band Magnetron),”
BTL Tech. Memorandum No. MM-44-140-55, Sept. 12, 1944,
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An effect that may be important in halo loops is that arising from
the electrostatic coupling of the loop to the neighboring strap. The
orientation of the loop determines whether this coupling aids or opposes
the magnetic coupling because the direction of current in the loop "3
reversed by rotating the loop through 180°, whereas the electrostatic
coupling remains unaffected.

Strap-fed Coupling Circuits.—This type of output cireuit, in which an
external coaxial line is connected across the anode block and the center
of a floating strap, may be represented schematically by the circuit of
Fig.517. The resonant system has
been represented by a chain of N = ¥~ ¢ "7~
4-terminal networks each consisting
of two strap sections and a resonator
such as was used in Chap. 4.
(Because the strap-fed coupling has
longitudinal asymmetry, the length
of the resonators actually has some G
effect. This, however, will be
ignored.) Suppose the impedance ¢

of the output circuit looking out D K
from CD to be Z. This may be /
transformed to a shunt element at External i
AB provided that the strap length transformer

is sufficiently small for the squares 4 B

and higher powers of 2rs/\,, where
s is the strap length, to be neglected.
To the same approximation Z is not
altered in this transformation. It ~=0-—----G-——

has been shown experimental]y that Fiae. 5:17.—Schematic network of a strap-
there is almost no residual reactance fed output.

added in making the junction between the strap and the coaxial line;
hence Z will be the impedance at the start of the coaxial line. It has
been remarked in the earlier discussion that Z will be a high impedance
(300 to 3000 ohms, for example) and the function of the external trans-
former will be in all probability, with standard load lines, to transform the
impedance level up somewhat. It is clearly possible to achieve a very
heavy loading with this circuit by making Z small, and it has thus found
more extensive application as a means of introducing reactance for tuning
purposes. Tuning curves obtained by moving a shorting plunger in a uni-
form coaxial line connected directly to the strap have indicated that the’
circuit of Fig. 5-17 gives excellent qualitative agreement with the measure-
ments. In one case, using a line of characteristic impedance of 63 ohms,
the predicted and observed Q. values were 10.9 and 11.2, respectively. In
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another case, with a line of charaeteristic impedance of 40.7 ohms, the
predicted and observed @, values were 7.1 and 7.6. The end effect at the
junction was confirmed to be negligible. This type of output circuit is
most valuable in long-wavelength magnetrons where the end spaces and
straps are large enough to facilitate construction.

Segmenti-fed Coupling.—The center conductor may be brought over a
segment for some distance and then bent down and connected to it
(see Fig. 5-4). The analysis would follow the same lines as that for the
center and halo loops, but it is somewhat more difficult to estimate the
parameters of the loop transformer a priori, for one has an intimate
mixture of electrostatic and magnetic coupling.

5-6. Waveguide-output Circuits.—All waveguide outputs used up to
the present time have coupled into the resonant system at the point of
highest current. As a consequence, they must present at this point a
low impedance (perhaps a few ohms or a fraction of an ohm) which is
transformed by the coupled resonator to a high level at the slot opening.
There are two principal means of developing the low impedance in series
with the resonator. In one, the waveguide line opens directly into
the back of one resonator and the impedance is transformed down from
that of the external line by suitable changes in the cross section of the
waveguide. In the other, the waveguide communicates with the reso-
nator by means of a nonresonant iris, which shunts part of the high guide
impedance. It is, of course, possible
to combine the two arrangements.
It may be noted that since the anode
height and pole piece separation of
most tubes is considerably less than
a half wavelength and, hence, less
Fig. 5-18.—Schematic network of an than the cutoff dimension of rectan-

iris-coupled output. gular guide, some artifice is almost
always necessary to effect a coupling between the short block and the
wide guide.

Iris Coupling.—Iris coupling has not been extensively used because
it has the inherent disadvantage of pulling the tube frequency. The
circuit may be rather crudely represented by the arrangement shown in
Fig. 5-18 in which the iris is represented simply as a shunt susceptance
gB;. It is likely that this is an oversimplification for an iris that is
situated essentially between lines of unequal characteristic impedance.
Tt will usually be the case that wel >> [1/Bi| and B; > @, where G is the
load admittance in shunt with the iris. If this is so, the combination of
iris and load gives an impedance in series with w¢l of value

1 1 G
GB o™ (J‘B’> + (F>

A L C
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Then, the additional shunt admittance at AB is

1111 .6y__ 1 . G
, 1 G jwll  @2L?\jB; ' B!} juiL’B; ' wiL’B?
Joob + = + 5

JB: B}

Using the expressions already derived for Q= and for the frequency shift

6w, one finds

L (44)

Since B; has been supposed substantially greater than G, the frequency
shift may easily be excessive. It is possible to compensate for this
coupled reactance in various ways. The coupled resonator may be made
with a somewhat different inductance from the others, in such a way that
the added reactance is balanced. Also by combining the iris coupling
with suitable external transformers or with another iris from which the
original iris is separated by a cavity, the frequency shift may be elimi-
nated. These methods are of frequent application in stabilized output
circuits and are discussed in Chaps. 11 and 16.

Directly Coupled Waveguide Circuits.—The most common method
of coupling a waveguide to the resonant system is to allow it to open
directly into the latter and to use external transformers to obtain the
correct impedance. The two most familiar ways of effecting the trans-
formation are by the use of a quarter-wavelength section of low-imped-
ance guide or through tapered sections. The latter supplies a perfectly
adequate means of arriving at a broadbanded transformer but is fre-
quently mechanically difficult. The tapered section is designed to have
its characteristic impedance change continuously and slowly (in terms
of wavelengths) from the high level of the external guide to the required
low level. Using well-known formulas for optimum frequency insensi-
tivity in the taper excellent matches may be obtained. The process,
however, entails the construction of a guide the cross section of which is
varying in a rather involved way and, in addition, should be rather long
for good results.!

The simplest transformer that can be used is a quarter-wavelength
line the characteristic impedance of which lies between that of the external
guide and the desired series impedance at the resonator. The trans-
forming line may take a variety of forms, the choice being principally
dictated by mechanical and dimensional considerations. In most cases
it must be a so-called “lumped” line or one in which the capacitive and
inductive parts of the guide are segregated to some extent. Such lines
possess the property that their cutoff wavelength exceeds considerably

1 See L. Tonks, GE Report No. 197, Mar. 23, 1943.
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their ‘“long’’ dimension, thus permitting access to a short tube. Another
method of producing a high cutoff wavelength in a small space is to use a
dielectric-filled guide. This technique has not been extensively used,
but quartz-filled tapers have been utilized in one type of magnetron.
When a guide of intermediate cross section is used, there will be trans-
former effects at the interfaces between this guide and the external line
and between the guide and the tube. Generally, then, Fig. 5-19 will be
needed to represent the whole output circuit. It will be supposed
that the effect of any discontinuities (iris window) beyond the trans-
former are neglected and the external line terminated.

Suppose that the transformer constants of the three sections (pro-

el — — —
ceeding from load to generator) are ass, B2, aiz; 0, 0, 7; and s, B, i

respectively. They might also be written ass, 82, 0; 0,0, ays + 7 — asy;

A . C E G

Junction Junction %

trans- K, Ag trans-

former 4 former

— v —0—
B D F H K
Fia. 5-19a.—Equivalent circuit for quarter-wavelength coupling.
A C J
Overall
transformer X,

O— O— ¢
B D K

Fia. 5-19b.—Reduced equivalent circuit for quarter-wavelength coupling

—-
and 0, B;, 0, where ay, is ignored, since it is indistinguishable from the
externalline. Measurements on several such transformers have indicated

that ase and a1 — as; are very small; this is equivalent to the statement
that the end effects of the quarter-wavelength section are small, ~ This
observation has been made on output circuits in which the transformer
cross section was such that the electric fields were largely confined to a
region with a small dimension parallel to the E-vector. There was thus
little interpenetr-tion of the transformer and tube or external guide

-
tieids, with a consequent small end correction. Thus, ignoring as.,

a1z — ag, the transformer becomes simply 0, 8:8:, = or, in other words, a
quarter-wavelength transformer whose apparent characteristic impedance
is not that of the physical guide K; but K, for example. The output
circuit is thus modified as shown in Fig. 5-19b.
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Let the load impedance be K, the equivalent characteristic impedance
of the intermediate guide K,, the operating wavelength A\, the inter-
mediate guide wavelength )\, and its cutoff wavelength A,,. Further
suppose, now, that X is unrestricted, so that the intermediate guide is not
necessarily exactly a quarter wavelength long. Suppose that its elec-
trical length is ¢ = 2xl/X,, where [ is its physical length. One has

Zl - Kl —_ e KO
Z, + K, K, + Kx
where Z, is the impedance seen at CD. F¥or ¢ ==, Z, = Ki/K,.

Differentiating logarithmically and setting N = X\,, the wavelength at
which I = A\,/4,

iz 11 \_.es_ .. 1o
dT(Zl—K, Z1+K> Jax Il

azZ Z2 Ki K

where the relation d\,/A} = d\/N\3 has been used. Tra.nsforming the
output impedance at the back of the resonator Z; to the resonator open-
ing, one has for the additional admittance at the slot,

Y. =G.+ jB. = YZ,,
when Y, « 1/Z;. Explicitly

G. Y%E = v:7Z,, @

n- g (i - V) () (5)

or since Ko > Z,

T e A\ S,

0

(45)

where bw, is the departure of the frequency from the resonant frequency
of the transformer. Using the relation @z = NY,/G., one has

_ NK[) Bw,,
B. Q=Y ( ) ("’0) (49)

This may be combined with the earlier expression éw./wy = —BL1/2NY,
for the frequency shift due to reactive loading to find the resonant
frequency of the system when the transformer is not exactly a- quarter
wavelength long. It is important to note that up to changes of the first
order in frequency, the resistive part of Z, is constant. The changes in
series reactance will produce some effect on G. by varying the total
reactance in series with Re(Z,). It is instructive to calculate the stored
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energy in the output circuit. If, as has been tacitly assumed above, the
junction transformers are frequency insensitive, the energy storage in
the output may be compared with that of the resonant system by evaluat-
ing the ratio [wo(8B./0wo)]/NY, = r. Using Eq. (49), there follows

r KoY, (\Y

"T2NNG: (i&) ' (50)
For a typical example with Qr = 400, K, = 400, Y, = 0.025 mho,
N =10, N\ /A = 1.25, Eq. (50) gives r = 0.12. Equation (50) may
easily be converted to other forms that put the dependence on other vari-
ables in evidence. The energy storage in this type of output circuit may

be relatively high as Eq. (50) indicates.
The lines used for the quarter-wavelength section are generally
“lumped,” and some cross sections that have been used are shown in

Fi6. 5-20.—Example of *'lumped” guides.

Fig. 5-20. In all cases the guide is essentially divided into two regions,
one of which is capacitive with high electric fields in a narrow crossbar
and the other inductive with high currents flowing in a more or less
cylindrical section. The cutoff wavelength of such a guide may plainly
be higher than that of a rectangular one of the same width, since the
capacitance has been increased in the center and the inductance at the.
outside. The problem of calculating the cutoff in these sections is
exactly analogous to that arising in calculating resonant frequencies of
unstrapped oscillators. Thus, in order to find the fundamental trans-
verse electric mode, one needs a solution of

VIT 45T =0  with %?L -0 (51)

on the walls of the guide,’ where 9/dn denotes normal differentiation
and x = 2r/\. The fields are then given by £, = —a7T/dy, E, = oT/9x,
and H. = (x/jeno)T. Since the gap in the crossbar is usually small
compared with the length of the latter, it is possible to put £, = 0 and
to suppose E, independent of y in the capacitive part (see Fig. 5-21).
If the dimensions of the cylinder are small compared with \/2r, one
may solve Laplace’s equation rather than Eq. (51) in this region and
match the solutions at the junction by equating T and 87/én there.

tSee 8. A. Schelkunoff, Electromagnetic Waves, Van Nostrand, New York, 1943,
p. 380.
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Calling T, the solution of Laplace’s equation in the cylinder with
aTy/on = 0, except at the junction, where 870/0n = 1, one may obtain
the equation for xo = 2m/Xo, where ) is the cutoff wavelength

A tan xol = % + % f TodS. (52)

In Eq. (52), A is the area of the cylinder, { the length and d the width
of the crossbar, and the integration is carried over the cylinder. If
xol is small, this gives

(53)

which is the result obtained by lumping the capacitance and inductance
completely and taking account of an end correction — [TdS/4 to

e
a1 T T
h 2b v 7
d + i
| 2 z
l—- a

F1a. 5-21.—H-section guide.

the length of the condenser. The calculation of Ty is not difficult
for simple geometrical shapes of the cylinder. For H-sections as shawn
in Fig. 521, x» may be found from

sd| 1 1 h wd
tan xul = XHT [ﬂsg 3 7s (1 — log. 7{)] (54)

provided that 2xs/h > 1.
The impedance of the lumped guide on the P — V2 basis may be found

from the relation
aT
_ 2wud \0zx /.-0 .

55
T (55)
Xax z=0

For H-sections this becomes

~| &,

377

K = 5 -
1 — Ry [ - sin 2xxl n 2d cos® xal
An 2xul lshqu

(56a)
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or

d
377 5

Ky — =2 ohms. (56b)

- (%)

The junction between the lumped guide and rectangular guide presents
a problem that may be handled in a satisfactory manner provided the
slot of the crossbar is narrow. The fields in the two guides may each
be expanded in terms of the appropriate normal modes. The tangential
field in the rectangular guide is then put equal to that in the lumped
guide across the opening of the latter and zero elsewhere in the same
plane. The tangential magnetic fields are equated across the opening.
Using these relations and the orthogonality of the wave functions in
each guide, a series of linear equations in the mode amplitudes may be
obtained. So far the treatment is exact. One now neglects all but the
principal modes or, in other words, supposes that there is no shunt
reactance at the junction. Carrying out this procedure, the principal
transformer constant A for the junction is found to be

T = W/ 1
A= 2732 = = ’ (57)
\/1 = NN [ (Bow - Bor)dSal?

where Az and Ax are the cutoff wavelengths in the H-section and the

rectangular guide and Eor and Eoz are the vector tangential electric fields
in the fundamental modes, while the integral is carried over the common

interface. Eox and Eoxr are normalized so that

//(EOH '_Eoy)dsﬂ = // (an ‘ Eon)dsn = 1. (58)

For H-to-rectangular junctions,

A2\ ¥
A 1‘xg\ abl

¥
L — sin 2xxl . 2d cos? xxl
_ 2xul Ishx% . (59)
[ xu cos xal cos xe(l + s) — cos xzl cos xu(l + s) ]2
sin sx z Xy — X%

where xz = 2r/Ax and xz = 2r/Az.  When all H-section dimensions are
small compared with Ax and Ag, this may be written as
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1 — MV
Ao N bl 2
Y

Y/ “ (TJ "

Equation (59) gives excellent agreement with experiment when the
assumptions of the analysis are fulfilled. The transformer constants
were measured for an H-section junction at several wavelengths from
7.5t013.5 cm. The end corrections were found to be entirely negligible,
while the values of

)\2

=N

A , X5
Ay

which should, according to Eq. (59), be frequency independent, were
found to be as indicated in Table 5-1. The dimensions in this case were
such that the slot width was small compared with the guide width. It
should be noted that the transformer effect at the junction is such as to
raise the impedance level even above that of the rectangular guide.
Using this value of A one may now calculate E,/H, at the center of the
crossbar at the junction with the tube and obtain

TaBLE 5-1.—TRANSFORMER CONSTANTS OF AN H-sEcTiON JUNCTION
Dimensions of H-section: d = 0.191 ¢cm; [ = 0.952 ¢m; s = 0.495 cm; A = 1.95 cm
Dimensions of rectangular guide: b = 3.81 cm; a = 8.58 cm

2
S
A Xk - o
o CIM A Y or, degrees an, degrees
1 -
Ay
7.16 36.3 +10.0 +9.5
8.46 34.6 +4.3 +5.0
9.51 39.9 -3.6 +2.2
10.58 32.6 -0.7 -2.2
11.51 36.0 —1.4 -3.0
12.57 36.7 +5.0 —6.5
AVG 36.0 + 2.2*
* The calculated value of A /1 — (A2/ArY)/1 ~ (N*/Au?) was 36.3.
- A2
B \/1 v - o
= m~ == (/[ (Bou - Eor)dSul, (61)
z

no N
\/1 TN
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where no = 377 ohms. To a first approximation the coupled resistance
will be
_ 4 E
R - ﬂ H:’ (62)
since it may be assumed that the magnetic field in the cylinders is very
loosely coupled to the resonant system. For H-sections the result
becomes

ATy
e l‘xz)

~ T%ab A2
Y
( xx cos lxx cos (I -r—r.g)xk ~ cos Ixz cos (I + S)XH>2
_\sin sx# o
1— sin 2lxaz , 2d cos? Ixx 377 ohms.
2lxn Ishx,
(63)
Using the approximation of Eq. (60) one has
2\ ¥
a0y 0 3)
k= ab (1 + Q_l) e 377 ohms, (64)
1 -
N

This equation indicates the critical dependence of the coupling upon the
width of the crossbar d. In strapped magnetrons the fields in the
resonant system vary along the length of the anode as cosh ax, where z
is again measured from the median plane (see Chap. 4), while the fields
in the crossbar vary as cos zx». This fact will affect the coupling at
the junction with the resonant system, and there will be some trans-
former effect. This may be taken into account by wmultiplying R by

another factor [[[(Eox * Eoye.)]?, where Ko, is the normalized resonator
field across the junction. This factor may be evaluated for an H-section
and is

2 (ﬁ)l cosh ar cos xaz da:)2

1 - sin 2lxx + 2d cos? Ixx fl cosh? az dz ‘ (85)
2xn Ishx 0

The magnitude of this correction will be small unless the tube is heavily
strapped. The formulas of Egs. (63) and (64) appear to give very close
agreement with experimental results. For example, when applied to
the case of the 4J50, a 16 hole-and-slot 3-em magnetron having a quarter-
wavelength H-section transformer of this type, a cold pulling figure
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of 9.3 Mc is calculated. This compares favorably with the experimental
values which are distributed close to 10 Me.

One sees that contrary to the assumption of an earlier paragraph,
there is some frequency dependence of the transformer effect at the
1 — (N/A5)

¥%
junction given by the term | —— =" | . This may be minimized
1 - ()‘ / )\Iz)
by making Ax = Az.
Iris Windows.—The vacuum seal in waveguide-output circuits is

usually an iris window. This consists of a disk of low-loss dielectric,
+05 %
+04 /

+03 - /
[}
g /
- +{).
o *02 4
3
3 o
2 +01
2
S 9/
E
[~}
=

- 0 /L
| /K °
=03

30 31 32 33 34 35
Wavelength in cm
F1a. 5:22.—Variation of shunt susceptance with thickness of window.

-02

usually glass, sealed across a metal iris opening. By a suitable choice
of the glass thickness and iris diameter it is possible to obtain a window
that, when placed between circular choke joints, produces a satisfactory
match over a relatively broad band. Since the window is placed between
guides of similar characteristic impedance, it behaves like a pure shunt
susceptance. Figure 5-22 shows the variation of this shunt susceptance
vs. wavelength for a particular window. The apparent external Q of
the window loaded by the matched line is 2.6. Thus there is little energy
stored in the window itself. By placing the window at a suitable distance
from the junction with the intermediate guide, the variations in the
resistive component of the reactance at the tube may be minimized.
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CHAPTER 6

THE INTERACTION OF THE ELECTRONS AND
THE ELECTROMAGNETIC FIELD

By L. R. WALKER

6-1. Introduction.—The central problem of the present chapter is to
examine the interaction of the electron stream with the electromagnetic

field of the resonator system in the annular region bounded by anode and+

cathode. At present the design of a magnetron of given characteristigs,
such as wavelength, magnetic field, operating voltage, power output, apd

pulling figure, is in principle a straightforward matter, the difficulties
arising in practice being largely those of realizing the design mechanically..

In view of this fact it is surprising to find that our understanding of the
interaction processes is largely of a qualitative nature. That successful
design should be possible may be ascribed to three facts: (1) A formula
is at hand that has a sound theoretical basis and full support from

experiment for estimating the voltage at which a magnetron of givdn . u

dimensions will operate when a definite magnetic field is applied. (2)
The behavior of the electron cloud may be shown to depend upon a small
number of parameters derived from the tube dimensions and the operating
variables (see Chap. 7). Thus, it is possible to say that any two mag-
netrons which may be run under conditions that make the values of these
parameters the same will operate with equal efficiency. One magnetron
design may, in this way, be derived from another that is known to be
satisfactory. (3) Finally, experience has shown that the efficiency of
magnetrons is remarkably insensitive to large changes in magnetic field
and d-c current and, to a somewhat lesser extent, to changes in load.
A performance chart for a 3-em magnetron is shown in Fig. 6:1, which
may be regarded as typical of present design. Figure 6-2 shows the
effect of load upon the efficiency of the same tube. In this figure the
electronic efficiency has been plotted as a function of the electronic (or
load) conductance. As a result of this broad range of satisfactory
operational conditions it is evidently possible to allow considerable
leeway in the choice of design parameters and still be confident that a
good magnetron will be obtained. Presumably, it is a consequence of
this happy situation that it has not been thought essential during the
wartime development of magnetrons to attack thoroughly the problem
of understanding the processes whereby the electrons transfer energy
to the oscillating field.
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There is little doubt that an acceptable qualitative description of the
process may be given, and the picture that this offers has been adequately
verified in those few instances for which numerical calculations have been
undertaken. Quantitatively and analytically, however, the progress
toward a solution has been meager. The steady-state problem may be
formulated in the following way. From a given applied d-¢ voltage
and r-f voltage at the anode and a uniform magnetic field in an interaction
space of known dimensions, calculate the d-¢ and r-f currents that will
flow to the anode. Then from these data, the input d-¢ power and the
output r-f power may be calculated and, consequently, the efficiency.
Knowing the in-phase and out-of-phase components of the r-f current
and the r-f voltage, the admittance of the electron stream is calculable,
and this will be the negative of the load admittance measured at suitably
defined terminals on the anode surface. This problem has not been
solved analytically under any set of operating conditions, even in an
approximate fashion. Numerical solutions have been obtained for a
few isolated cases but never for a range of values of the operating param-
eters in the same tube.

Turning from the steady-state problem to that of the initiation of
oscillations, an equally unsatisfactory condition is revealed. No rigorous
criterion has been established that will determine whether or not, under
given conditions of magnetic field, voltage, and load, oscillations will
build up from noise level. Similarly, there is no theory of starting time,
which would require a solution of the problem with a constantly increasing
d-¢ voltage.!

Although the inconclusive status of many of these problems may be
attributed to the fact that emphasis has been laid on empirical develop-
ment, they nevertheless present formidable analytical difficulties. In
the a._ount of the theory given in this chapter an attempt is made to
formulate the problem in a straightforward way and thus to show where
the difficulties arise that prevent a complete solution. An outline of
various attempts to solve the main problem and certain simplified versions
of it are given.

6-2. The Assumptions Underlying the Analysis.—Any discussion of
the interaction problem must begin by making a number of assumptions,
which are of varying degrees of plausibility, The more familiar of these
will be discussed before setting up the equatinns of motion and the field
equations. The justification and significance of some statemeénts made
here may not, however, appear until later. Reference to Fig. 6-3 will
indicate the region in which the flow of elpctrons is to be investigated.
The cylindrical cathode of radius r. is held at zero potential; the concentric

18ee, however, Chaps. 8 and 9 of this volume for an empirical approach to the
analysis of transient behavior.
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anode of radius r, has applied to it a d-c¢ potential V,. In the annular
region bounded by anode and cathode there exist r-f fields that form part
of the total field of the resonant system and that must, therefore, satisfy
certain boundary conditions at the anode. The applied magnetic field
is supposed everywhere to be constant in magnitude and to be parallel
to the axis of the cylinders, which axis is also taken as the z-axis of a
system of polar coordinates.
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F1a. 6-3.—Interaction space and related coordinate system for (N = 8) magnetron.

The first assumption is that the whole problem may be reduced to a
two-dimensional one. In real magnetrons this can be a good approxima-
tion only for regions near to the median plane of the tube, since there will
be appreciable end effects at the extremities of the interaction space.
Here there will be, because of the discontinuity in the cross section of
the anode block and the possible presence of straps and of hats on the
cathode, a considerable modification of the tangential field, and further-
more z-components of the d-¢ and r-f electric fields will appear. In view
of the extreme complexity of the field patterns in this region, however,
it is desirable to ignore these end effects. Experimentally, no specific
effects have been found that indicate critical conditions in the end regions,
and it is roughly true that a magnetron of double length behaves like
one of single length operating at half the current and power level if the
effects of length in mode spectrum are compensated for. Thus, it is
probably justifiable at present to treat the magnetron as part of an infinite
cylindrical structure in which all the electric fields are tangential and
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independent of the z coordinate and in which the magnetic fields are
purely axial. Similarly it will be supposed that the motion of the
electrons is wholly in the (r-¢)-plane. Since the thermal velocity of emis-
sion in the 2z direction is small, this is a reasonable assumption in the
absence of axial electric fields. It may be noted that the function
of cathode hats, whether electric or magnetic, is to cause a deliberate
distortion of the electric or magnetic fields at the ends of the interaction
space, thus tending to keep electrons within the interaction space despite
the effects of space-charge repulsion in an axial direction.

It is customary to assume that relativistic corrections and other
effects that depend upon the finite velocity of propagation of light may
beignored. These include the relativistic variation of mass with velocity,
the influence of the r-f magnetic field on the electron motion, the change
in d-¢ magnetic field produced by the circulating currents, and the use
of the wave equation rather than Laplace’s equation. The conditions
under which it is valid to make these approximations are discussed at
some length in the succeeding section. It will be found that some of the
simpler consequences of the equations of motion may be preserved in
relativistic form.

Conditions of space-charge limitation are generally supposed to
prevail at the cathode, and, in consequence, the potentials and radial
components of all fields are supposed to vanish there. It is impossible
to test the accuracy of this hypothesis, for there is no simple state of the
space charge in a magnetic field the theory of which has been sufficiently
worked out to provide an experimental test. At present one can merely
assume the condition true until it is demonstrated that it leads to false
results. It is true that the current densities drawn in magnetrons fre-
quently exceed substantially those which can be drawn from identical
cathodes in pulsed diodes under verifiably space-charge-limited condi-
tions. However, the existence of excess cathode heating during mag-
netron operation indicates the presence of back bombardment by
electrons, and the known secondary-emitting properties of oxide cathodes
suggest that secondary emission is probably sufficient to yield the
required current densities (see Chap. 12). The possibility of secondary
emission from contaminated anode surfaces is a further complication
which is ignored.

Associated closely with the assumption of space-charge limitafion is
the hypothesis of a zero velocity of emission of the electrons from the
cathode. Plainly, the electrons have actually a thermal velocity dis-
tribution at the cathode, but it seems reasonable to suppose, since the
mean thermal energy is so small compared with the energies acquired
by the electrons in moving through the field, that the effect of the dis-
tribution is negligible in an operating magnetron. It will appear that
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there are certain oversimplified conditions having critical solutions that
might be affected by an energy distribution at the cathode, but these are
far from simulating the conditions in a real tube. The experimental
observation that, for many tubes, operation is independent of cathode
temperature over a wide range may confirm the assumption that the
initial velocity distribution of the electrons is not significant.

A most important simplification in the problem is effected by a further
set of assumptions concerning the nature of the field with which the
electrons interact. These simplifications may be combined into the
definition of an anode voltage of the form Vo4 Vi cos (n¢ — wo),
where n is the mode number and wg is 27 times the frequency of the
resonant system. The principal point here is that the r-f voltage is
represented by a traveling wave, This assumption will be discussed
more fully in Sec. 6-3, but the argument may be summarized here. The
electromagnetic field in the interaction space may always be expanded
in a series of Fourier components, each of which represents a traveling
or rotating wave in the interaction space. For a particle moving so
that its angular velocity is close to that of the slowest of these waves, the
other components (at least for the condition of wm-mode operation)
represent a high-freqiency perturbation the effect of which can be
ignored in general. A more complicated situation arises, however,
for modes other than the m-mode. It will be shown that for a single
rotating component it is always possible to define a ““ voltage’’ or potential
in which the electrons move. The form used above for the anode voltage
also assumes that the anode surface is a zero impedance sheet at the
harmonie frequencies 2wo, 3w, ete., so that the harmonic components of
current induce no corresponding voltage components on the anode.

The steady-state problem may now be formulated again for the sake
of clarity. In the annular region between two coaxial cylinders there
exists a constant, uniform magnetic field B, parallel to the axis of the
cylinders. The inner cylinder of radius 7. is held at zero potential, and
the radial fields at its surface also vanish; electrons are emitted from this
surface with zero velocity, and their z-component of velocity remains
zero. The electromagnetic fields are transverse electric,! and a potential
Vo+ Vicos (n¢ — wot) exists at the surface of the outer cylinder of
radius r,. It is desired to calculate the radial current density J, at the
anode in the form of a Fourier series

Je = J,-,o + J,1 co8 (neg — wot) + Jf,__l sin (n¢ — wol)
+ J.2 co82(nd — wet) + J,,—2 8in 2(n¢ — wet) + higher terms.

Then the d-¢c power input is 2xr4hd ,,0Vo or 14V, and the r-f power output

18. A. Schelkunoff, Electromagnetic Waves, Van Nostrand, New York, 1943, p. 154,
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is #rahd,,1 Vi or $1,Vy. The admittance of the electron stream is
Jr,l +jJr,—l — . _ I] +jI_1.
2xrsh (——IT—') = (Ga+ jBa = *Vl

The salient features of magnetron operation may be pointed out again
by an examination of Figs. 61, 6-4, 6-5, and 6-6 which show the perform-
ance of strapped magnetrons in the alternative forms of V, vs. I, and V,
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Fra. 6:5.—D-c voltage vs. d-c current for typical 9-em strapped magnetron (N = 8)

with magnetic field in webers/sq meter, « - - - - power output in kw, — ~ — efficiency
in per cent.

vs. B, plots. Similarly Fig. 6-7 shows the performance of a rising-sun
magnetron on a Vo vs. I plot. Features that are typical of the normal
performance of strapped magnetrons are the linearity of the operating
lines in the Vo vs. I, diagram and the linearity of the constant-current
lines in the B, vs. V, diagram, the general tendency of efficiency to
increase monotonically with magnetic field at fixed current, and the
falling of the efficiency at very low and at high currents. The fall in
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efficiency at low currents varies rather markedly among different types
of tube. Tt is generally believed to be due to leakage current, a compre-
hensive term used to refer to electrons that reach the anode by means
other than a direct interaction with the r~f field. The rising-sun magne-
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Fia. 6:6.—D-c voltage vs. magnetic field for typical 9-cm magnetron (N = 8) with
current in amp, — — — efficiency in per cent.

tron is further complicated by having a region of magnetic field in which
the efficiency temporarily falls off (see Chap. 3).

Figure 6-8 shows a series of operating lines on a (Vo,Io)-plot for various
values of the load conductance Gr = —Ga. The operating lines are
now seen to be in general somewhat curved and to move toward higher
voltages as (. is increased. These data are derived from a 10-cm
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magpetron, but the behavior is generally observed for all types. Finally
Fig. 6-9 shows the variations! of I, and 7.; as functions of V,and V..
Exhaustive data of this pature have rarely been taken, but general
experience confirms the main features of Fig. 6-9.
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100
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D-c current in amp
F1g. 6:7.-—D-c voltage vs. d-¢ current for a typical 3-cm rising-sun magnetron with
magnetic field in gauss, ~==-- power output in kw, — — — efficiency in per cent.

All these curves lend support to the observation that the efficiency
of operation of the magnetron is a slowly varying function of voltage,
current, magnetic field, and load. It is also indicated experimentally

1 The data from which this plot was obtained are given in the last section of
Chap. 7.
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that the properties of the space-charge cloud are singularly frequency
independent and certainly - negligibly so compared with the resonant
system.
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values.)

10-cm magnetron, 1371 gauss, N = 8 with
- - - peak r-f voltage in kv.
Reduced linear current densities are given by I/36.

electronic

(Values in parentheses are reduced

6:3. The Field Equations.—The Fourier analysis of the r-f fields
existing in the interaction space was shown in Chap. 2 to lead to an
indefinite number of components, the dependence of which upon time
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and angle was governed by a term of the form exp j{wd + p¢), where

p= i[m-N(l+%)]= *[—n — IN].

Here N is the number of segments; ! an arbitrary integer, positive or
negative; m the mode number in the sense of Chap. 4; and » the usual
mode number! = (N/2) — m. Waves for which p is negative travel
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Fia. 6-9.—In-phase and out-of-phase r-f current amplitudes as a function of d-c and rf
voltages. Reduced linear current densities are given by I/36.

counterclockwise or in the same sense as an electron in a positive mag-
netic field. In the m-mode the slowest wave traveling in the same sense
as the electrons has p = ~N/2(m = 0,1 = 0). For an electron at rest
with respect to such a wave or traveling so that on the average it is at
rest with respect to it, another component, p’ say, will appear to move
with an angular velocity wo(1/p’ + 2/N) and thus produces a perturba-
tion whose frequency is p’wo(1/p’ + 2/N) or

()] -en @

! The appearance of this particular set of components is always to be expected if
the fields satisfy the relation, Vig + (20/N)] = e*i/NV (¢), regardless of the form of
+ +

V{(¢). For, if V(¢) = 2 amei™®, then V(¢ + (2x/N)] = 2 aneimé+iczrm/Ny and
one must have 2nx/N = (2mx/N) + 2pxr or m = n — pN, where p is arbitrary but
integral.
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Thus, the perturbations produced by the other components have the
frequencies + 2wy, +4wo, 6wy, ete. The situation is somewhat more
complicated for the other modes. For the mth mode, the two slowest
components in the counterclockwise direction have p = —[(N/2) + m],
and the frequencies of the perturbations due to other components are found

to be given by [(i\r’/(lm—++l)m] wo and[Z - %] wp in the case corre-

sponding to the + sign and — [W];Il——m] ws and [2 + (T/lzv)l——m] wo
for the case of the — sign. For the case m = 1, which is usually of most
interest when m = 0, there are always low-frequency perturbations; the

(—Jv—/z)le'] wWo in the flI'St case and I:‘(W;f_—ljl Wo

in the second. It follows that in m-mode operation the perturbations,
produced by other components upon an electron that moves slowly on
the average with respect to the slowest counterclockwise component, are
all of high frequency, whereas for other modes this is certainly not the
case. It appears, then, to be plausible, at least as an initial assumption,
to ignore all the field components save the slowest counterclockwise one
when the tube is running in the m-mode. To justify the assumption
completely it would be necessary to show that in the field of such a single
component electrons actually move so that they have on the average only
a small angular momentum with respect to the wave and furthermore
that the high-frequency waves do indeed have no secular effect. It will
be found that this justification can be carried through in part and also
that there are certain consequences of the rotating-wave hypothesis
which are adequately confirmed by experiment. It is, in fact, found that
even in cases of operation in modes for which m s 0, a single component
determines certain features of the operation. The above considerations
apply to strapped magnetrons without reservation, but in the rising-sun
design there is always present, even in the m-mode, a component for which
p = 0 (see Chap. 3). The effects of this component have to be given
special consideration (see Sec. 6-11).

A considerable simplification is introduced into the problem if only
one component of the total field need be considered. For then in a system
of axes that rotates with the angular velocity of this wave, all electro-
magnetic fields are independent of time. In addition, the electron dis-
tribution in velocity and position will be a stationary one. Thus, if
the electromagnetic fields in the interaction space are described by a
scalar potential A, and a vector potential A = A,, 4,, 4., these are func-
tions of the variables r, ¢ — wt, 2, where w is the angular velocity of the
rotating wave. One may write ¢ = ¢ — wt. As has been indicated

lowest frequencies are I:
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in the previous section it will be assumed that the fields are transverse
electric and independent of 2. The potentials are thus functions of r
and ¢ alone.

In writing down the field equations and the equations of motion, the
relativistic form will be used for the latter and no terms dropped from
the former. In this way, the approximations that involve the velocity
of light may be made consistently. The MKS system of units will be
adhered to throughout.

The field vectors E and B, which will be supposed to contain the
applied fields are connected with the potentials through the equations

dA
E = —grad 4o — o )
and
B, = curl, A. (2)
The potentials themselves satisfy
O’Ao p
2 — — TS -—
V24, Ho€o EYE) 0 (3)
with p positive for an electron cloud and
62A
div grad A — Hoko o = uoJ, (4)

where po = 1.257 X 10~¢ henry/meter, ¢, = 8.854 X 1072 farad/meter,
and p and J are the charge and current densities at any point. The
subsidiary relation holds
div A + w220 = 0. (5)
Equations (1) to (5) may now be written out in the (r-¢)-system. It
should be noted that

9 and 9 o2
36 o at “ o
from the definition of ¥ and from the fact that d/dz = 0. Equations
(1) and (2) give
aAo dA,

B, = + o G0 (6)
16A0 aA¢ 3
E¢ = r a\b + = - 7' a¢ (AU - wTA¢); (7)
1 a4,
B, = 7[6_7' (rds) — W:I ®)

Equations (3) and (5) give

19 aA(,) 1 34y p
m("w + (72 —e P“‘”) e ®
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and
1904, 04,
- ( A,) + w — Ho€ow —— a9 = 0. (10)

Equation (4) requires a more extended treatment.

A, + jA, = e%(4, + jAd,)  and

One has the relations
Jo + jJy = e*(J, + 3J4).

Thus, Eq. (4) may be written in an obvious notation

92 . . . .
(V3.¢ ~ Moo 5p> [e=i*(A; + jAL)] = moe™*(J, + jJ ) (11)

or
\ L0 .
Vie — uoeo (Ar + jAs) + ye* 34! [e=*(A, + jA4)]
92 . 1 .
24340} & = wlde + 39, (1)
yielding the pair of equations

(V ¢ — Mo€o 0t2> A.

(aAé_l_A):#oJ”

(13)
V2, — hoeo ap) A+ ( - A¢> = uoJ,
or
19 324, A, 2904
m( ( “"‘”"’)aw — @ T agy e (M)
an
8 ( 34, P4y A¢ L 204,
?ar(’ or ( T Hee °‘°) oyt TRy #oly. (14D)

Equations (9), (10), (14a), and (14b) may be combined to give the two
equations that imply the equation of continuity, namely,

9A 04,
pord, = 39 [#oéowT aro - ar (T o) +1=— #oeow’T) 6!#] (15a)
and
<] 0A 1 ad
pody = po(Jy — wrp) = [#ofowr ar“ — 75 4

1 A,
+ (; - Mo€ow27‘> 3% ] (15b)
The bracketed function is essentially the stream function for electron
flow in the rotating system.

It is to be noted that in writing down Egs. (3) and (4), which imply
that the fields are derivable from a continuous distribution of charge
and current, a further assumption is being made which requires justifica-
tion. Strictly speaking the charge distribution is not continuous, and
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the expression p should be replaced by a summation over the individual
electrons. In using the expression for the average charge density to
calculate the field, one is ignoring the effects of what is usually referred
to as “electron interaction,” namely, the process whereby two electrons
exchange energy directly as a result of a close encounter rather than
through their average effect on the field. Some idea of the magnitude
of this effect may be obtained in the following way. Consider a volume
V containing nV electrons distributed at random. Then the force at
any point fluctuates statistically about a mean value. The analogous
problem of the gravitational field of a distribution of stars has been
considered by Chandrasekhar,! and it is found that the natural measure
of the force fluctuations is

%
F="e¢ (g) volts/meter (16)

in the notation of the present problem (p/e = n). Assuming an emission
of 50 amp/sq em and a radial velocity of ¢/10 one finds for F the value
104 volts/meter or 0.1 kv/em. This is very small compared with the
field strengths normally existing in the magnetron (20 to 50 kv/cm).
The process of electron interaction, however, must be expected to play
some role in the neighborhood of the cathode where electron densities
are highest and the fields weakest.

6-4. The Equations of Motion.—The equations of motion may be
derived in numerous ways. It is convenient here to make use of the
Lagrangian function.? Two theorems concerning the Lagrangian
equations of motion will be found useful in this connection. Suppose

that L(xy, 29, . . . Zn; &1, £2. . . . Za; 1) is the Lagrangian function of a
particle, involving the time explicitly, but that by means of a change of
variables.; = z1 4+ af, 75 = 23, . . . . . . I, = T, the time dependence
may be eliminated. One has
) a _ 9 ]
5;2—4—3—27;, and E—Ey q—1,2, n,
and
d a 2} ., 0 ., 0 . 0 . 0
m—&+aa+$1m+"°$qm+ x‘a_ig"_x“a—i'q"'
AV R S R S ST ST
=w thgt Yooz, t figs T Taga T
=9,
dt’

18, Chandrasekhar, *“Stochastic Problems in Physics and Astronomy,” Rev. Mod.
Phys., 15, 1 (1943).

* A very lucid account of Lagrangian and Hamiltonian equations for high-speed
(relativistic) particles is given by MacColl, Bell System Tech. Jour., 38, 153 (1943).
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Thus, the Lagrangian equations of motion

d [ oL oL
become
d (3L’ oL/
where
Ll(z{) x"Zy st ,17{, j";) e yt’) = L(xly T2 a.:h 1‘:2: ct e ;t) (18)

The Egs. (17a) and (17b) for a Lagrangian that does not involve the time
directly are known to possess the integral

B = -+, S—Z (19)
¢

Thus, an integral may be found for the equations of motion although
the fields in the original coordinates are time varying.

Now consider H' and L’ as functions of the coordinates x,, and denote
derivatives with respect to the coordinates by 9/dz,. Then

o _ ol _ N‘oal | N eaol N\, o (oL
ar, 9, ax’, 3] oz, 9%, * oz, \oz! )’
and using the equations of motion (17b) wheres =1,2, - - - | n

8H' _ L[ o (oL 8 for\] _
T‘*E[a—(a-) 52 a—)]—"

if all the particles have the same energy constant. Then in 3 dimensions,
. .. oL - = R ...
if one writes 7= b,, one has curl p = Ax, with )\ independent of position
8
and time.
The Lagrangian function for an electron in a transverse electric field
is in the relativistic case, with e a positive quantity,

! 2 2 12\ %
L = —mc? kl — 1‘_-{—621'_45) + e(Ay — FA, — rdA,). (21R)!

Since it has been supposed that the transformation ¢ = ¢ + of will
eliminate the time dependence of the potentials, the lemmas of the

! Where the same equation is given in relativistic and nonrelativistic forms, the
same number will be used with the affix R or N to distinguish the cases.
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preceding paragraph may be used. One has

. 3
L' = —-mocz[l —_ i‘t}%f—*_—w)z_]

+ e[do — rd. — r(§ + w)A4y],
(22R)

and the equations of motion are

d met _ mr(Y + w)? 84, .94,
a[u——m‘”‘f]—m“[W”aﬁ“”)

6(rA¢)] (23R)

or
and
d 2 w 0A A,
([550 n] [2 ro2), n
where

_ iy 4 @)

c?

'32
Or, alternatively,

d mof _ mor(Y + w)?
di [(1 = ﬁ’)“] g + o5 Ao = ord)]

_ d[a(m» aA,], (25R)

ar 3y
2 Fi ,
The integral H' may be formed:
i %
H' = moct [1 - ’—*%“)—] — eldo — #4; = r($ + w)A,]
mali? + (Y + w)] . mole? — r*o(Y + w)]
P A eye ) = BT

- e(Ao — er¢). (27R)

If the convention is introduced that Ao, A,, and A, shall all vanish at
the cathode and the assumption of vanishing velocities at the cathode
in the stationary coordinate system be recalled, one has

H' = moc?. (28R)

Since H is independent of the electron considered, the second lemma, (20)
holds with A = 0, and one has

a of 0 2 ll' + w
v [(1 o EA'] & [m(lr ¢ Bzw) "”A‘]' (29R)
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This equation may be written as a pair of equations

i j“; 5 = e+ %’ (30R)
»
m(“lr (_‘”;);’) = erdy + %V%’, (31R)

and (27R) becomes

ow
oy

=0"m%01+(64 +6W) +(64¢+:63 . (32R)

In the nonrelativistic case a similar set of equations is found. The
Lagrangian is now

moC + er -—_ W

L = %" [ 4+ 12 + 0)?] + eldo — 74, — r(d + 0)4,], (21N)

and the equations of motion are

mt = mar(h + @) + oo (Ao — wrdy) — el [‘9(;‘:0 _ "ai'], (25N)
3 A
%[moﬂ(\ﬁ + 0] = e (Ao = rdy) + o [a(gr") - 9(%] (26N)

In this case the equations may be further modified to read

met = merd? + 8%(1‘10 — wrd,s + ;—'L; wz,z) — e I:G(TA,, 94,

ar £
- 2—"2’—‘“-7 ] 33)
(morz\lz) ( o — wrdy + 7;—2 wzrz) + er [__6(1";:4,)
aA 2771,0(1)7'7

These equations have a simple interpretation. They are the equations
of motion of a particle moving in a scalar potential

Ao —_ er¢ + (7;—:) w?r?

a A, 2mw
P
The term (mo/2e)w?r? is related to the centrifugal force, and the term
2mewr/e to the Coriolis’ force, appropriate to the rotating axes. Such a
formulation of the equations was not possible in the relativistic case.

and in a magnetic field
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The integral H' is now

H = = 22+ 10 + o) = ddo — #4, — () + 0)AJ]
+ mo[i? + 1Y + w)] —erd, — efrd,
= B2+ 1) — e(do — wdy) — o s (27N)

and with the usual conditions at r = r,, one has H’ = 0.
Thus,

a

% (mot — ed) = o mrh + w) = erd,] (29N)

and
met = ed, -|— W (30N)
morz(\b + w) = erA¢ + 6¢ (31N)

2.4 1 oW 1 oW

edo + w — " 2m0[< r+—— +(6A°’+ra¢ ] (32N)
1t will be noted that Eqs. (32R) and (32N) are essentially the Hamil-
ton-Jacobi equations of the system, since W /3’ = —w (AW /3Y).

W is thus the action function of the system.! The introduction of the
action function in the magnetron problem does not appear to be so
fruitful as one might expect. The reason for this lies in one of the most
complicated characteristics of the electron motion, namely, that the
motion is essentially of a multiple-stream type. Through any point
in the interaction space, transformed into the rotating system, there will
pass a number of electron orbits. This fact hardly requires proof, but
it has been established empirically by computation of orbits. It follows
as a consequence that the electron velocity is a multiple valued function
of position and thus that W has similar properties. W, then, is a function
having many branches, and these branches will meet along branch
curves which will be the envelope of a series of electron trajectories.
The character of these branch curves has been discussed by Cherry,?
who has given expressions for the potential and velocities in the neighbor-
hood of such curves.

The multiple-stream property of the electron flow gives rise to severe
analytical difficulties in handling the field equations, for it is necessary
to write an equation of continuity for each stream, where a stream is

1 The function W has been used by Gabor, Proc. IRE, 88, 792 (1945), in problems
of electron dynamics.

? Cherry, ‘“General Theory of Magnetron,” Council for Scientific and Industrial
Research, Sydney, Report No. MUM-1, 1943, has discussed the formulation of the
magnetron equations in terms of W.
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defined as a set of electron orbits leaving one branch curve and terminat-
ing on another. With each stream there is associated a charge density,
and it is the sum of these charge densities and the sum of the currents
that must be substituted in Egs. (9), (14a), and (14b). So far there does
not seem to have been developed any analytical method that will effec-
tively handle all the streams together and automatically perform the
required summations. It is always necessary to handle the individual
streams separately and fit them together at the branch curves.

There are two important equations that may be deduced from the
integrals (27R) and (27N). Thus, if a particle is to reach a given point
in the interaction space at all, one must have # and ¥ both real at that
point. Putting # = 0 in Eq. (28R) and writing ¢ + @ = &, one has

mo(c? — rlwd)
it T
i
et — 20 + riwld? = _12(1 _ r?qu),

2
mg

22
(vt 22 o0 - 2ors 1 (s 2)

For the reality of ¢ one must have

) D
(r‘w’ + 2222> (c‘ - _2_2) < ol
0 0
e — rin?
s (Ao — wrdy) 5 4 ,1 -~ L. (33R)

The nonrelativistic analogue is easily deduced from (27N) or from (33R)
by supposing re < ¢ and is

e(do —TwAdy) S —

‘m,o(?2 + e(Ao - er¢) =

Ii
e

or

Mmariw?

2

(33N)

Equations (33N) and (33R) play a very important role in the analysis
of magnetron behavior, since they yield an inequality that the fields
must satisfy in order that electrons shall reach a preassigned point in the
interaction space. They will be discussed further at a later point in this
section.

Another pair of significant formulas is obtained by rewriting (27N)
and (27R) in terms of the stationary coordinates. In this way one finds

_ mo(c? ~ wr2d)

VITF

mac?

— (Ao — wrd,) (34R)
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and
0= % (2 -+ 1242 — e(Ay — rwdy) — morido. (34N)
From (34R)
eAq -~ moc2(—\—/—1—1_—62 - 1) = — % + ewrd, = —-w%f: (35R)
and from (34N)
edo — T (1 + 1%%) = —murtdo + ewrdy = —o % (35N)

The expression on the left of Eq. (35N) is the difference between the
potential energy of an electron in the scalar field and the kinetic energy
of the electron; it therefore represents the energy loss of the electron to
the oscillating field.

6-6. Conditions under Which Relativistic Effects May Be Eliminated.
Before discussing more fully the equations of motion it is essential to
find out under what conditions the relativistic and propagation effects
can be eliminated. The field equations, Eqgs. (9), (10), (14a), and (14b),
and the equations of motion (25R) and (26R) describe exactly the condi-
tions in the interaction space. When one proceeds from the relativistic
Lagrangian to the nonrelativistic form, the procedure is equivalent to
ignoring all terms in the relativistic expression of higher powers in v/c
than the second, where v is the electron velocity. It is important then
to ignore all terms of the same order occurring in the field equations.
To be able to recognize such terms it is useful to introduce a set of
characteristic variables for length, time, scalar and vector potentials,
and charge density that will be appropriate to the relativistic regime.
Thus, for a characteristic length one uses ro = ¢/w = n)o/2r, since the
quantity poeow? = w?/c? is the only parameter occurring in the field
equations. For a characteristic time, #{, = 1/w is chosen; and for the
scalar and vector potentials, the natural units are moc?/e and moc/e.
The characteristic charge density is e/mow?,. Writing

r wr 3 e
T*=r—°=?’ t‘=t—o=wt, A:=———m°c2Ao,
e Mow?
A:& = ;nTc Arg, p* = —%‘3 s
Egs. (9), (10), (14a), and (14b) become
1 9 dAY 1 ”AY
A N
1 3 1 94% oA
;;a”;;(T*Af)‘FF?f—'aTo:Oy (37
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ol oA 1 a0 .., ( )aAZ‘]_*-**
.w[waﬁ-qg—(la>+ = 1, (38)

JAY¥ 1 6 6A*

where the bar denotes differentiation with respect to ¢*. Similarly
the integrals of the equation of motion are

- 1=+ 1)
LAY - Al = e s (40)

] 7* el _ ™My +1 .|

Rl B ke L BT
In order to examine the conditions under which the above equations
may be simplified, one calculates 44 for the applied magnetic field B, in

the absence of an electron stream. Since B, = (1/r)(8/3r)(rds), if
Ay = 0 at r = r, then

and

rde =206 — ), (42)
or, in reduced variables,
reay = 280 o1 — gy = Lo, (43)
where
me_
¥= e.Bo

The unperturbed magnitude of 7*A% evidently depends upon two
independent quantities: r* = 2xr/n\,, which measures the size of inter-
action space in terms of n\,, and v, which is the ratio of the Larmor
frequency of the electron precession in a magnetic field B, to the angular
velocity of the rotating wave. Suppose that 7*2 « 1, then the condition
[Eq. (33R)] that an electron shall be able to reach a point in the inter-
action space becomes

L+ A —r*at 2 V1 - ™

which may be written

or

1 r¥*2
S D (44)

where (r*A%) is the contribution to r*4% coming from the r-f fields and
from the circulating currents. It will now be assumed that A}, r*A%,
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and A¥ are all small compared with unity. This is equivalent to saying
that all voltages are small compared with mec?/e = 506 kv; this is true
for all magnetrons that have been built up to the present. For the
inequality to be satisfied, it is to be noted that a lower limit is set upon
the value of y in a tube of given dimensions (fixed ¥ and r¥). Using
Eq. (28R), limits may be set upon the values of #* and 7*(J + 1); thus,

1

[7* < 4f1 — T (45a)
and
*_ BEF T =1 * VET 1
A L A F e e D)
where '

B =1+ A} — r*A%.

Thus |7*| and r*|§ + 1| are of the order of (AF — r*A3)%. From Eq.
(36), p* is of the order of A; and neglecting squares of r*2, A¥ satisfies
Poisson’s equation. The right-hand sides of Egs. (38) and (39) are of
order r*A¥ and A¥(A}* — r*), and these equations may be written

o [1[ad* o _ [o2Ar | A
O R G

+ terms of the order of (r*A§%), (46a)

and

9 [104F 8 .|l _ 8 [ . 04F dA%

ar {F[W =y Ad]} = aT*[’* w T o
+ terms of the order of (A¥¥* — r*A¥). (46b)

The right-hand sides of these equations are small compared with the
left, and thus

BAY 0 iwy = phis

3 o (r*A%) = r* times a constant (46¢)
which for the particular boundary conditions = —Bo. Equation (37)
leads, neglecting r*24, in comparison with r*44, to

943

oy
Combining, the part of A* depending upon the r-f fields and circulating
current and A¥ satisfy

% (r*ax) + 93¢ _ . (46d)

wqr _ 9T
rA,—(NI (47a)

and
. c (47

ar*
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where
1 9 1 92T
™+ or* ( ar* * TREoyE 0. (47c)
It may be noted that
1 9 [ _a¢*4% L 3 r*A%
FBF[’" P +?ﬁ\a—¢2¢) =0. (47d)

Summing up the results of this section, it appears that for the neglect
of relativistic effects and of propagation effects to be permissible it is
necessary to have r* small and also vy sufficiently small so that A} is
small compared with unity, while 7*4% must also be small compared with
unity. Physically, the dimensions of the tube must be small in units of
n\/2r, and all voltages must be small when measured in a unit of 500 kv.
Under these circumstances the scalar potential A, satisfies Poisson’s
equation, while the potentials A, and 44 are derived from a quantity T
satisfying Laplace’s equation. Furthermore, the term entering the
equations of motion of the form [d(rA,)/dr — dA,/3¢] is in a nonrela-
tivistic approximation equal to B,, the applied magnetic field; fo. if the
second integral [Eq. (29R)] of the motion is written in reduced units,

A[_ 7 J_ o[ 41 ]_odr oAy
w|vi=s| | vrss) W T W

and the right-hand side is —7*B, plus small terms.

6-6. The Nonrelativistic Equations.—The equations of motion in the
normal, nonrelativistic case may now be put into a more convenient
form. Substituting the expression }B¢(r — r2/r) for the part of the
vector potential A; due to the applied magnetic field and dropping the
term A,, which contributes only to the r-f magnetic field just shown to be
negligible, Eqs. (33) and (34) become, writing 4, for the r-f tangential
component of vector potential,

mef = mord? + e %[ — wrd, — (r2 —7r2) + 5% w"‘rz]
—edr (Bo - ?-”19-“’ ) (49q)
;%[mori'[«] =e 5% [Ao — wrd, — b% rt — 12 + %w’r’]

+m( - —mg"—"’ ) (49h)

or

mot = med? + ¢ ?-Y-—E — ery B, (50a)
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(mor Y) = e 3'/’ E +.eriB,, (50b)
where
Va= A, — wrd, — 9’,2150 2 —rd) + ;—’-:;oﬂr’ (51a)
and
Bi = B, — 2”;"“’- (51b)

The associated field equations will reduce to two by virtue of the neglect
of A, and the other small terms. Since, in the equations of motion,
Aoand A, appear only in the combination Ay — wrd,, it is useful to write
down the equation that this new variable satisfies, and this is plainly
1o, 040~ wrdy) + 1940 —wrdy) _ »p,
ror ar r? 2 €0
The two equations involving the currents are no longer of interest in so far

as they affect the potentials, but the equation of continuity that they
imply remains, and one has

35 ) + 25 ) = 0, (53)

where properly there is one such equation for each stream, and p in
Eq. (52) is summed over all streams.

Equations (49a) (49b), (52), and (5R) may be taken as the funda-
mental equations of the magnetron problem. It is convenient at this
point to introduce a new system of reduced or dimensionless variables
suitable for the nonrelativistic problem, by choosing an appropriate
characteristic length, time, voltage, and so forth. The choice of such
wnits is largely arbitrary. There are, for example, two natural fre-
quencies appearing: (1) the angular velocity of the electromagnetic
fields w/2r = ws/2rn and (2) the frequency of precession of an electron

in a constant magnetic field B,, namely, (1/27)(eBy/2m), in the absence
* of electric fields. Either one of these frequencies might be used to deter-
mine 8 characteristic time. The unit of length might be chosen to be
one of the radial dimensions of the tube r. or 7, or might again be asso-
ciated with the free-space wavelength as was natural in studying propaga-
tion effects. Similarly, various unit voltages suggest themselves because
any suitably defined energy or amount of work associated with an
electron when divided by e gives a possible voltage. Thus, one could
use the kinetic energy of an electron at rest in the moving system at some
appropriate radius; the kinetic energy of an electron moving around
a circle of given radius in a constant magnetic field By; the work done
in moving an electron at rest in the moving system against magnetic
forces over a definite distance, and so on.

(52)
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The system of characteristic quantities that will be used here is as
follows: For length, the cathode radius is used, r,; for time, the reciprocal
of 27 times the Larmor frequency, or 2m/eB, (this has the advantage
of enabling one to pass readily to the case where there is no traveling
wave); for a unit voltage, wBer? will be used. The latter is the work
done against the magnetic field By in moving unit charge at rest in the
rotating system from r =0 to r = r.. It would be more natural, no
doubt, to use $wBo(r2 — r?) as a unit, since this would measure the work
done between cathode and anode, but this choice leads to clumsy expres-
sions in the reduced equations.

Thus, one writes

o _eBy _ 24, 24,
s = 'r—c} T = % t, ay = WwBon, 6¢ = 'Fo;;! and Y= Egl

as before. Then the equations (49a) and (49b) become

Ve

s =sy+ Y5 — 20— st (54a)
} (sW) = v ag:: + 2(1 — v)ss, (54b)

where the bar denotes differentiation with respect to r and

Ve = ao — s, — (s2 — 1) + % % (55)

The field equations [Egs. (52) and (53)] become

19 o(a — sdy) 10%ao—s8) _ 2 _
;E[s—_‘as ] +$2 a¢,2 _wBotop—e (56)
and
(988) + 35 (93'7/) =0. (57)

For future reference, the form assumed by Egs. (54a), (54b), (56), and
(57) for the case of a linear magnetron will be written down here. It
will be assumed that n and r. tend to infinity together in such a way that
re/n= No/2x, where A\, will be the wavelength of the traveling wave
in the linear tube. Measuring y outward from the cathode and z parallel
to the cathode, then

and
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Equations (54a) and (54b) become
BVEP

E=o 4%, (580)
= Ve =
(=29 Tl 2%, (58b)
where
o= Yo o Moo Mot
Ao eB 2r meB
and

Ver = {*; {ap — @) ~ 20 + g (59)

Equations (56) and (57) take the form

a? d* Te 4w
(a—E), + @) [)\—0 (@ — 63)] = B T (60)

(epf) + 5 (op() (61)

and

The formulation of the magnetron problem is now completed by
specifying the boundary conditions for the fields and velocities. Since
the electrons are supposed to leave the cathode at rest in the stationary
system, one has

§=0, (62a)
¢=—v ats=1, (62b)
and
=0, (63a)
T=—¢ at{ =0 (630)

in the linear system. At the cathode (s = 1 or { = 0) the potentials
a, and sd@, (or d;) vanish; and if there is to be space-charge limitation,
so must the radial field E, {or E,). Since
6:10 BA,.
ar Y Tog

a
= - 5—7" (Ao —_ er,;,) -_ (J)TB.

E = —

= 2 (o~ wriy),

then
%(ao —s&) =0 ats=1 (64a)
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or

ai( @—8)=0 satf=0. (64b)

The boundary conditions at the anode are set on the potentials and are
agsumed to be

a, = A,, (65a)

sdy = A, cos ny at s = 8§, = 15/1, (65b)
or

a. = A cos 2rE at & = & = Ya/ N (65¢)

All potentials must be periodic then in ¢/n or £/2r. It will be recognized
that in the preceding paragraphs, the assertion made in the first section
that a potential could be defined on the anode whose value was said to be
Vo + Vi cos (n¢ — wet) has been justified. For the combination of
potentials a; — sd,; or ap — @& is the only one entering the nonrelativistic
equations of motion. It should be noted from Eq. (7) that this potential
is —[rE; dy or the tangential integral of the tangential electric field.

The solution of the problem would consist of a determination of the
electron velocities, the charge density, and the potential at any point
of the interaction space. From these the radial current density o could
be found in the form

ot =Jr=dro+ Jrncosny +Jo_1sinng + - - - (66)
where

2x ID 2x I1
21r’/‘J,,0 = prt d\l/ = W} 7!‘7'-7.-,1 = prf cos ’nyll dﬂl = W,
0 0

2x
7y = / pri sin ny dy = I—;L—ly ete.
0
Or, if 2wewBirieco/4m is introduced as a characteristic current density per
unit length, with the definition, i = ps§,

I 2
2,0 = f pss dy, iy = / psS§ cos ny dy,
0 0

2'
Ty = / 0S5 sin ny dy, ete.
0

where i,,0, . . . are reduced linear current densities per unit length.

The d-c power input is 2wrehd. Vo = (rh/dm)ew?Biries(i.040), and
the r-f power output is wrhJ, 1V, = (wrh/8m)ew?Biries(i,141). The
admittance of the electron stream per unit length is

Jor + Jomt o €Bo fo + oy
14

2w, €0
¢ 1 2m 3&4,1

= Gu +jBn = Yu.
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Under equilibrium conditions, Gq + jBa = — Yiea. In principle, then,
the potentials determine the currents, and, in turn, the load may be found.
Practically, one sets the load, and the potentials and currents adjust
themselves to suitable values for producing the correct admittance of
the electron stream.

One may summarize the analysis by putting the result in functional
form. Thus,

Ya = y(v, S o, &, 1) (67)
and

if,o = ir.O(‘Y, Say Ao, adu n); (68)

v is a parameter in the equations of motion; s, governs the range of
integration; a; and @, appear in the boundary conditions; and = in a condi-
tion of periodicity. The nonrelativistic Eqs. (54a), (54b), (56), and (57)
and their solution in the form of Eqgs. (67) and (68) provide the basis for
the process of “scaling” magnetrons. Thus, if the linear dimensions of a
magnetron are changed by a factor «, the operating wavelength changed
by a factor o, and the magnetic field altered by a factor 1/e, it is clear
that the variables v, s,, @, and &,,; do not alter provided that the d-c
and a-¢ voltages are unchanged. It follows from Egs. (67) and (68)
that ya and i,,0 do not change. If the height % is also scaled by the factor
a, the characteristic admittances and currents for the tube will be
unchanged, and thus the total current and admittance remain the same.
Thus, two magnetrons related in this way will operate at the same d-¢
voltage and current with identical power output and loading (provided,
one must add, that the circuit efficiencies are the same).

Similarly if the wavelength and magnetic field are left unchanged but
the radial dimensions of the interaction space are multiplied by a factor
8, the values of s, and v are unaltered. Now, an increase of a factor 8%in
the d-c and r-f voltages leaves @, and sd@, unchanged. One has, again, no
change in i, and ya. The characteristic admittance for the whole tube
is left the same, while the characteristic current is increased by 2.
Thus the loading is unchanged, while the total current increases by 52
The power level increases by % A scaling process of this nature is
referred to usually as voltage scaling.

The process of scaling is extensively used in practice to design new
magnetrons, and the systematics of the method are described fully in
Chap. 10. The prediction of similar operation when the variables
¥, Sa» M, @, and sd, are unchanged has been thoroughly confirmed by
experimental results. The first scaling process will retain its validity
in the relativistic range, since there will be no change in the additional
parameter r = 2rr/nA which appears in that case. However, voltage
scaling will not be applicable because of the uncompensated change in 7.
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Attempts have been made to reduce the number of parameters upon
which tube performance depends by introducing various combinations of
v, $a and 7z into the definitions of the characteristic variables, thus
obtaining new reduced variables. It is hoped that in such variables a
fewer number than five may suffice to describe the behavior. One such a
set is due to Slater! and has been extensively used by Clogston in Chap.
10. In this case a characteristic magnetic field given by Bo(l — 72/r2)
is used. The quantity is closely related to the vector potential of the
magnetic field. The characteristic voltage is 1/e times the kinetic energy
of an electron moving around the cathode surface at rest in the rotating
system. The characteristic current is chosen to be the current flowing
at cutoff in the magnetron acting as a diode when a certain special voltage
is applied to the anode.? Itisnot clear that this current has any intimate
connection with the currents flowing in an operating magnetron, since
the mechanism whereby electrons reach the anode in the operating
magnetron is quite different from that involved in the magnetron without
tangential fields. The characteristic voltages and currents may be used
to define a characteristic admittance. In terms of these variables,
reduced performance charts may be plotted for tubes with various values
of n; and if the variables had been expeditiously chosen, one might hope
to find no dependence upon n. As pointed out in Chap. 10, this hope
is not fulfilled.

Analytical Deductions from the Equalions of Molion.—Returning
now to the discussion of the equations of motion one may note that the
expressions (27N) and (29N) now take the form

3(3 + sW?) = yVe (69)
and

3 W -5 =20 - s, (70)

The condition that an electron be able to reach a point in the interaction
space is simply that Ve > 0 or a, — sé@, > (1. — v/2)s? — 1. This
appears quite clearly as a consequence of the fact that the motion now
takes place in a conservative potential field. Sofar as it has been possible
to check thig inequality experimentally it appears to be universally
confirmed. In order to make the comparison it is necessary to know the
r-f voltages within the tube, and this information is generally not avail-
able. If the data shown in Sec. 7-7 are examined, it will be found that
under all circumstances the sum of the d-c voltage and the r-f voltage

1J, C. Slater, “Theory of Magnetron Operation,”” RL Report No. 43-28.
2 This voltage is the threshold voltage defined in the next section. As Eq. (75)

will show, there is only one magnetic field at which threshold and cutoff voltage can
be equal.
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exceeds (we/n\)r2[(1 — 1/s3)By — (mw/e)] which is the form taken by
the inequality when written in ordinary variables, The inequality
provides information about the d-c voltage only when the r-f voltage is
taken to be vanishingly small. Under such circumstances one has

z2(1—9v/2)sr-1 (71a)
or at the anode

2 1
Vo 942 X 1087%[(1 - F) Bo —

0.0107]_

~ (71b)

The voltage defined by the equality sign in Eqs. (71a) and (71b) is known
as the threshold voltage. Its significance for the operation of magnetrons
was first pointed out by Hartree;!' essentially the same form had been
found by Posthumus? for the case of vanishingly small cathode radius.
It may be thought of as the minimum d-o voltage that will permit
electrons to reach a point in the interaction space as the r-f voltage is
made vanishingly small. It therefore plays a role for the multisegment
(or tangential resonance) type of magnetron analogous to that of the
Hull or cutoff voltage in a magnetron with cylindrical symmetry. The
relation between the two formulas may be seen if Eq. (54b) is integrated
in the form

¢—1+7=-1—( 14y [?-K‘Edf (72)

and the result substituted in Eq. (69)

s’+[(1—7)s+ ( 14 v f‘ﬁ‘!df]
—27(an—sﬂ¢)—7(2—7)52+27,

- 1y |, 2y aV, (/ aVs )’

= 2‘7(00 — sdy). (73)

Then in the ahsence of tangential fields (9Vs/8y = 0) the condition,
satisfied by (@ — sd&,) is simply
1 1y
v(ao — s8,) 2 5 (5 - ;) . (74)
This is the classical Hull formula giving the maximum radius that an
electron can attain in a constant magnetic field under a given voltage.
Using an obvious notation one has

1 D. R. Hartres, CVD Report No. 1536, Mag. 17.
2 K. Posthumus, Wireless Eng. and Exzp. Wireless, 12, 126 (1935).
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v(@o — S$@y)uan — Y(@o — SAy)snrosbold

O (L
=%[(7—1)s+%]

1 y [ Ve, |

=3[ -1[ %]

2 0. (75)

The threshold voltage thus lies below the Hull voltage save at the point
(y —1)s = —1/sory =1 — 1/s% at this point the curves of threshold
and Hull voltage as functions of v have a point of common tangency.

It is found experimentally that if the threshold voltage given by Eq.
(71b) be plotted against By, the straight line resulting is generally very
nearly parallel to the constant-current lines in the V,, B, representation
of magnetron performance. Depending upon the value of gq, the thresh-
old, or Hartree line as it is frequently known, lies above or below the
Vo, Bo line for extrapolated zero current, by different amounts. Strictly
speaking it should coincide with the zero-current line, and the data shown
in Sec. 7-7 indicate that at very low currents the constant B, lines in a
normal V,, I, performance chart must be curved. This region of very
low r-f voltage is almost unobservable experimentally because of the
presence of leakage currents. Somewhat fortuitously, for most mag-
netrons operating with their normal loads and at normal currents, the
constant-current lines in the By, V, plane lie quite close to the Hartree
line. The agreement is usually good to about one kilovolt. This fact
has been of outstanding value in the design of magnetrons, since it
permits the operating voltage at a given field to be estimated with
sufficient accuracy in advance. At the same time the good agreement
between the operating voltage and the threshold voltage over a very wide
range of magnetic fields provides a confirmation of the supposition that
the electrons interact with only one rotating component of the total
field.

According to Eq. (35N) the energy that an electron contributes to
the oscillating field measured by the difference between its potential
energy in the scalar field A, and its kinetic energy is

Vi = ewrdy — morto(y + w)
= ewrd, + ew %—“ ? — 1) — matw(d + w).  (6.35N)
Writing

2
View = wB20rc Qloees




240 INTERACTION OF THE ELECTRONS [SEc. 6-6
then
o = S* (1 — v — ¢) — 1 + sd, (76a)

= 58, - v f Ma“b—“‘” dr, (76b)

and the efficiency of an individual electron 4 is given by

(ao_sa¢)+7/'9(_ﬂ(;p-’ﬂd7

Qg N ao

ap — aQ
1_1'=0 loss

W

The efficiency for vanishingly small r-f voltage and a d-c¢ voltage equal
to the threshold voltage may be written down directly; then since
¥ = 0 and s@; = 0, one finds

s2 1 —v)—1 1

p=—=1—-—0—. (78)
Y 2 1
I B N

Efficiencies calculated from this expression are substantially higher
than those observed in practice (for example, for the 3-cm strapped
magnetron whose performance chart appears in Fig. 6-1, the calculated
efficiencies are greater by a factor of 1.2 to 1.5). This might have been
expected from the highly idealized conditions under which Eq. (78) was
derived. At the same time, the unavoidable presence of leakage current
in operating tubes lowers the efficiency in the very region of low rf
amplitudes. Equation (78) indicates an identical efficiency per electron

for magnetrons having the same value of %(1 — —31—2) This will no

longer be true if the accurate expression for energy loss is used, but it
corresponds roughly to a fact of experience, namely, that a lower ¥
(higher magnetic field) is needed for the same efficiency when s, is
decreased. As a rough working rule the connection between vy and s,
may be assumed, indeed, to be 1 — (315) = constant X vy for the same

efficiency.
The actual over-all efficiency of the magnetron will be given by

7 esslsr (1 — v — 1 — s + s@) dy
Qo ];2' es§ dy

n = ) (79)

where the integrals are the sum of two integrals over anode and cathode
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separately. Equation (79) may be written as

Sl — ) =1 fo 0s8(s8 — s20) dy
n = +

- , (80)
2o a, ﬁ)z 935 d\b

the first term of which is the expression in Eq. (78), if a, is the threshold
voltage.

The behavior of the energy loss function [Eq. (76)] is indicated by
Figs. 6-10 and 6-11 which show the energy loss as a function of magnetic
field at fixed load for a 3-em strapped magnetron and as a function of
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F16. 6-10.—Average energy loss per electron in kilovolts at constant load for a typical

3-cm strapped magnetron with magnetic field in webers/sq meter, - - - - - electron
loss in kv.

r-f and d-¢ voltages for a 10-cm strapped magnetron. It is of some
interest to see that for the particular load of Fig. 6-10 the average energy
loss per electron is remarkably independent of current, which indicates
that the general behavior of the individual electrons is not much altered
as the operating line is traversed but that the number of electrons
increases. This may be accidental, since the evidence from Fig. 6-11
is that the average energy loss is largely a function of r-f voltage and
relatively independent of d-¢ voltage. One cannot be certain that the
apparent maximum in the energy loss as a function of r-f voltage is real
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or whether or not the presence of leakage current at low levels is giving
low values of energy loss. The maximum energy loss observed under
the conditions of Fig. 6-11 is 2-33, which compares with the value of
s2(1 — y) — 1 of 3.5. It must be recalled that the average energy loss
is diminished by inclusion of the energy gain due to electrons returning
to the cathode.

15.05 kv (0.72) 21 T
20 N
a
€
s 14.40 kv (0.49)
5 5.78 kv (15
g 15 57/
o 13.75 kv (0.24)
3
_g_ | 1310 kv (-0.0) , '
& 10F - . 135 kv (35)
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(-072) 1050 kv (-095)  \ 173 kv (4.5)
1 1 1 A
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1_,, total out-of - phase r-f current in amp
GP
Fra. 6-11,—Average energy loss per electron (in reduced units) at constant magnetic

field with d-c voltage contours in kv, — — — — r-f voltage contoursin kv, - - - - elec-

tron loss in kv. Figures in parentheses are reduced voltages; d-c values relative to thresh-
old. Reduced linear current densities are given by I/36.

One further point may be noted in connection with Eq. (76b). Writ-
ing the radial conduction current density as j..q, the r-f power must be

2x 2r T _
/ JoonaSTes dY — ¥ / Jooma$ Ay / S(e0 —sB) 4, (81)
0 0 o Yy

But the first term is simply the r-f power delivered by the conduction
current, and hence the second term must be the r-f power supplied by the
displacement current. It is worth while noting that the second term is
the one from which the dominant contribution to the power arises while
the first may and, in general, does represent a loss. This fact was pointed
out by Slater.! Equation (76b) puts the energy loss in a form that shows
clearly the contribution arising from the electron’s moving in & time
varying potential, when it is recalled that 8/0t = —w(3/0y).
1J, C, Slater, ““Theory of Magnetron Operation,” RL Report No. 43-28.
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The various forms of the expression for energy loss indicate that the
latter will increase with s,. This is seen from the leading term of Eq. (80)
or the second term of Eq. (81) and arises from the fact that the larger
s, is the longer the time the electron spends in the interaction space.
If d(ay — sd,)/8¢ has the sign appropriate for a loss of energy over
most of the path, the total loss will increase with transit time. Thus,
from the standpoint of efficiency, s, would naturally be made large.
There is no series of carefully controlled experiments to confirm the
expected increase of efficiency with s,, but all the scattered data confirm it.

In practice, the choice of s, is determined by considerations connected
with mode shifting. It appears to be true that for any number of
oscillators N there is a maximum value of s, beyond which operation
will not take place consistently in the r-mode. Since mode shifting is
in at least one aspect a starting problem, the lack of a theory of starting
prohibits a determination of the maximum s,. It is probably true,
however, that the essential factor is that as s, is increased, the ratio of
the intensity of the r-mode field to that of the field of any other mode
decreases for equal amplitudes at the anode when the ratio is measured
at some point within the initial nonoscillating cloud of space charge.
Thus the building-up of some other mode than the r-mode is more
probable,

6-7. Symmetrical States.—In this section the investigations that have
been carried out on symmetrical states of the magnetron or those in
which the potential has no angular variation will be considered. Despite
the very different conditions that prevail in a normal magnetron, it
might be expected that the symmetrical states would be of importance
in the initiation of oscillations. Many of the difficulties that prevent
exact integration of the equations of electron motion in the presence of a
rotating potential wave persist in the symmetrical case, notably the
difficulty of dealing with multistream states. In fact, the solutions
of the symmetrical problem are sufficiently tentative so that it is difficult
to make them the foundation of a theory of starting for the tangential-
field type of magnetron. Because the problem is in some respects
simpler than that which includes rotating waves, it has been the subject
of considerable analytical and numerical work. It is proposed to outline
some of this work mainly to bring out the difficulties involved and to
indicate the relevance of the conclusions to the major problem. The
discussion is based upon the work of Hartree, Allis, Brillouin, and
Bloch? and follows most closely the work of Bloch.

The equations of motion in the absence of a rotating field may be
formed from Eqs. (54a) and (54b) by letting v tend to zero and writing

1D. R. Hartree, CVD Report, Mag. 23; Allis, RL Report No. 98, Sec. V, 1941;
L. Brillouin, AMP Report No. 129; F. Bloch, NDRC 15-411-175, 1945.
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yVe = V5. This leads to

§—spr— 25y + 961; (82a)

and

(—id;(s?\P) - 255, (82b)

where V., is equal to (4mo/eBjr3) A, and is independent of angle but may,
however, now be a function of time. The second equation may be
integrated; and putting ¢ = 0 at s = 1, there follows

1

v=1-5 (83)

Substituting this value in Eq. (82a) one finds

e_ 1 vV,
T
1
= :g_?' — 8§ — @i (84)
The other equations are
13 91) 18y
s 98 (s as }] ~ s ds (se2) = ev (85)
and
10 - -
5 55 [S(ves — &2)] = 0, (86)

where the displacement current € must be included in the current.
Equation (86) leads to

s(e§y — €2) = i, (87)

where i is the reduced current per unit length and is independent of s.
Thus, using Eq. (85)

d(ess)  _d(ess) -
dar ~°7as T sé
or
1 (7 .
—ey = ;/ vt dr (88)
and Eq. (84) takes its most compact form,
s L sl ian (89)
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Eqgs. (87) and (89) have one very specialized solution which may be
written down immediately. For suppose that § = 0 identically. Then

Vs = %(s - %)2 (90)

2 1 '
o = ;(1 + 3—4) (91)

The solution represents a single-stream state in which all the electrons
move in circles about the cathode with angular velocities given by Eq.
(83). The charge density is so disposed that the space-charge forces
exactly balance the magnetic ones. The cloud of electrons extends out
to some definite radius beyond which a logarithmic potential continues
the solution to the anode when the voltage on the latter is less than
3[s. — (1/s.)]%. The potential at any point is exactly the Hull cutoff
voltage, as one might expect, since § = 0. There is no radial current,
since the charge density is everywhere finite; this means that = has to
be allowed to become indefinitely large in Eq. (89). This special solution
was discovered by Blewett and Ramo! for the case of negligible cathode
radius and again by Brillouin;? it is frequently referred to as the Brillouin
steady state. It will be described here as a type S state, indicating
that it is a single-stream state. It may be observed that an analogous
state may be found when the exact relativistic equations of motion and
field are used. It is necessary here to take into account the effect of the
magnetic field of the circulating current.

Another conceivable steady state is one in which the electrons return
to the cathode after turning back at some point. In this case there will
be a double-stream or type D state. Since the voltage is to be considered
constant, the current is constant and one may write

and

=l -st+ 1 (92)
since there will be equal and opposite currents through any point of
the interaction space. Consider iy as representing the ingoing or out-
going current. Explicitly
iy = 8m}
2me?Birie,

where I is the current per unit length. Evaluating one finds

iy = 4.55 X 1012 B{rz'

1], P. Blewett and S. Ramo, Phys. Rev, 57, 635 (1940).
2 L. Brillouin, Phys. Rev. 60, 385 (1941), and 85, 166 (1942).
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For the values of I, r., and B common in operating magnetrons iy will
be quite small. Solutions of Eqs. (89) and (92) with s =1, § = 0 at
= 0 have been investigated by Allis and others. It may be shown
that for iy tending to zero, § > 0 for all s < 2.271 and, hence, that no
type D state is possible for cloud radii less than 2.271. For iy not
zero, numerical integration must be resorted to, and Allis, Hartree, and
Brillouin have shown in this way that a slightly lower critical cloud
radius is found. The value of this radius appears to approach a limit
close to 2 as iy becomes large. Thus, in a tube for which s, > 2.271 it
appears that as the anode voltage is raised, no type D state will be possible
until the voltage exceeds a certain minimum value; such a state will
exist over a certain range of voltages, after which current will be drawn
to the anode.
A question that has been treated extensively by Bloch is that of the
transient phenomena occurring in those cases where i is not constant in
time. Writing Eq. (89) in the form

s§ =52 — s + ¢(r,70), (93a)
where
o(r,m0) = / ¥i dr, (93b)

it will be supposed that vi <1 for all r, which, as was remarked
above, will be true over the usual range of parameters. The linear
case will be considered also because of its peculiar features. Putting

s=1+4+ —g and allowing r, — o, Eq. (93a) becomes
7 = —4y + reo(r,mo). (94a)

This is simply the equation of a harmonic oscillator subject to a driving
force 7.¢(r,70). A solution is required with y =0, § =0 at 7 = r,.
The problem admits of an exact solution. Considering a function
yo{r,7’) such that
2 2.
Wt aye =W ay =0 (94b)
and

! 7 a ’
wi') =0 L =1,

one may multiply Eq. (94a) by %, and Eq. (94b) by —y. Then, adding
the results and integrating from 7, to 7/, one has

d 7 7
(w2 - Vi) - | " redlrm(ri) dr (95)
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and using the boundary conditions on y,

’ ’ dy dyo ’ v /]
—y(r) = yolro’) 5 (r0) — y(r0) 5= (ro7’) + ] To(T,ro)yo(r,7’) dr.

Observing the boundary conditions on y(z),

y') = — / T red(r,70)yo(r,r’) dr. (96)

A suitable choice for the function y.(r,7’) is % sin 2(r — '), and thus Eq.
(96) becomes

y(@) = — % / re@(7',0) sin 2(v' — 7) dr'’. 97)
Consider, now, dy(r)/dr,. From Eq. (97)
gg‘; = — % [' a—lzc—‘%:]-ll)] sin 2(7" — 1) dr’ since ¢(ro,75) = 0

- % / revi(ro) sin 2+ — ) dr’

- %r,yi(ro) [1 — cos 2(rg — 7)] (98)
<0 since i(ry) = 0.

This, however, is exactly the condition that electron orbits shall not
cross, for it implies that at any given time an electron emitted later than
another lies closer to the cathode than does the latter. The state is
thus of type 8. The result is independent of the variation of current
and hence of that of the voltage. On the other hand, if the condition of
space-charge limitation is relaxed, Brillouin has shown that the orbits do
cross. Although the orbits do not actually cross in the case considered
above, they may touch and, indeed, will do so when 7y — 7 = (n + #)=.
There will then exist curves in space defined by this equation with which
the orbits have tangential contact; the charge density on such curves will
be indefinitely large. This appears to be an instance in which the inclu-
sion of an initial velocity distribution for the electrons might be expected
to modify the results very considerably, but this point has not been
investigated.

The situation in the cylindrical case is considerably more complicated,
and the nature of the results quite different. To make progress by
analytical means it is necessary to suppose that (y#) < 1. Then
¢(1,10) is a slowly varying function of r. If this be so, an approximate
solution of Eq. (93a) is seen to be given by s,, where

§; — st = ¢(r,m0), (99)
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for s, defined by Eq. (99) is a slowly varying function of 7, and § will
be small.
Suppose then that
s =8+ x, (100)

where z is capable of being written in the form
x=7\11+)\2z2+)\313+ b

in which X\ is of the order of d¢/dr and, hence, A << 1. Substituting
Eq. (100) in Eq. (93a) one has

T+ 2(1 + s34z = — 3% + (37 + 557%)2? — (557
+ 95782 + (s3% + l4syMzt — - - - . (101)

This is, once again, the equation of an oscillator driven by the forces
represented by the right-hand side. There is, however, the important
distinction that the frequency of the oscillator is slowly changing because
of the dependence of s; upon 7. The total motion of the electron thus
consists of a slow drift, monotonically away from the cathode, given by
So(7,70), superimposed upon which is an oscillatory term with adiabatically
varying frequency. The secular motion becomes more sluggish as
d¢/9r or i —» 0. Equation (101) may be solved correctly to the first
order in d¢/dr by neglecting the terms in z?, z3, etc., provided that
solutions of

Z4+ 201 4+ sg¥)z = T + wi(r,ro)z =0 (102)
are available correct to the first order in d¢/dr. To obtain these intro-
duce 8(r,7¢) = /7w1(1','ro) dr’ and write £ = exp ﬁ)a zd¢’; then in such

variables Eq. (102) becomes

z+1=0. (103q)

Putting 2 = +7 + p, where p is of the order of d¢/dr, one has to the
first-order

ép _ _,. _ .dlogw
36 = F2p F1e o8 (103b)
or, integrating,
]
p= +i f 9 lgog, “lexp F 26(0 — 0') de’ (103¢)
0

and

é ¢
z = exp [iiO + z/; de’ A 9 lgg, “lexp F 2i(8 — 8) do’]. (103d)
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Integrating by parts

exp + 10 * 9 log Vw1 _ ,
T = \/_ exp [ 5y exp F 2¢(8 — ¢)do’.  (103e)

Provided that the variation of current is reasonably uniform, the last

integral will be of the order of dw:/80 or 8¢/8r. Thus, the zero-order
solutions are of the form

y=A
Ve

The solution of Eq. (101), correct to first-order terms, may now be found
as it was in the linear case, where for the function y.(r,7’) one uses

exp + id. (104)

sin (8 — 8')
Var(rro)an (' ro)

Yolr,7") = (105)

This satisfies the condition that dy.(s',7) /07 = 1, since 88/87 = w,(r,7o)
by definition. Making use of Eq. (95) and noting that the driving
term is — §,, one has

, i)

yi') = —yo(TOJT) (TD) + yD (ro,7")2(10) + / So(r,mo)yolr,r) dr.
(106)

Now, 8o -+ z satisfies the boundary conditions s, +z = land § + £ =0

at 7 = 7¢; thus, x{re,re) = 0 and dx(rere) /97 = — §ilro,me). Thus, Eq.

(106) becomes, using Eq. (105),

, .
9(r') = —Sulroyre) — RO sin @ + / So(r70) sin (§ — ¢) dr
wl(Ta,To)wl(T ,T0) Vor{rro)wi (v 14)

107)

Since wi(ro,ro) = 2 and because 250(So + $5%) = d¢(r,r0)/87, which
implies §o(7o,r0) = 1(8¢(r0,70)/37), the final result for the motion correct
to first-order terms in d¢/dr is

sin 6
4 /2w1(r,70) ’9"

TR AS W . N ll) P WA OTY
/ Wlr'im) = ey \/w;(fr Toywi{r’,7q) (108)

s(r,70) = So(r,70) — (70,70)

If this is to be a type S state,

Ll <0 for all vy and 1.
61'0
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Differentiating with respect to ro and retaining only terms of zero and
first order,

3 _3sy _ lrore)  sin® _ Plrore)  cos 8 96
dre 91 4 \/2wi(r,r0) 4 A/2ui(r,m0) 970
sin 8 v $o(ro,70)
w(roro) Vwri(r,ro)wi(re,re) . LV @i(r,ro)ei(r’,mo)

[(g—fé — ;—i) cos (8’ — 6) d"’]' (109)

To the first order, the second and fourth terms cancel, leaving
as 380 _ &(To,‘ro) cos 8 a6

910 ono 4 \/2uw(r,r0) 970

So(To,m0) a6’ a6 ;o .
* Vel |G w0 -0 a)s o

furthermore,

o _ _ _$(roro)
970 2(so + s(,—’)’
and ( |
a8, - + (70,70 (]_ — 330_4) _
aTo 2(30 + s ) 4(50 + so_a)a ¢(T°’70)2,
So one has
a_s_ = — 6(70)70) 2 cos 0 ﬂ
oo 4 [SoF 55 V2arlryre) 970
a6’ a6
.’ a)(-ro,‘ro) TTO a—.‘.o
— ¢ — 9 dr. 1
* /r,, 2050 + 55°) Var(r oo e ( ) dr. (111)

This reduces, as it should, to Eq. (98) whens = 1 + (y/r,) and r, —
for then s5 = 1, ¢ = 2(r" — 1¢), and wi{r,70) = 2. The conditions for
ds/d7o < 0 are now more complieated than they were in the linear case
if (ro,70), or, in other words, the current, is allowed to vary in an unre-
stricted fashion. If the current is small enough and its rate of change is
also small and regular, the integral term in Eq. (111) may be ignored
and the condition for a type S solution becomes

2 L1 e
So + saa = ‘\/2(.01(7,1'0) 61.0 (1120)
By j#s definition '
i( 60) awl('r,-ro) _ Owi(7,10) @
or afo N )
dwy(r! 7o) i .
— +— = wi(rg,T0) +f wlé()'r,'ro) IE:?)) dr (112b)
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Thus. even for small currents, the form of 36/d7, varies considerably
according to the law of current. When i is constant,

9| _ i) = V2L F 559 (112¢)

aTo

and the condition in Eq. (112a) becomes

1 2 W\

sy < 2.271.

or

Thus, a solution of type S exists as long as the cloud radius is less than
2.271; this is the same limiting radius found by Allis as the lower limit
of cloud radii for which a type D state was possible. It may, indeed, be
shown that for finite currents there always exists a critical radius separat-
ing type S and type D states.

Now suppose that i is no longer constant but increases or decreases
monotonically, remaining at all times small, however. Since w, steadily
decreases with 7, dw,/dr is negative; and then for positive currents, from
Eq. (112b), —30/070 must also decrease monotonically with r. If i
increases monotonically, i(r0)/i(r) < 1 for all r; and using Eq. (112b)
again, one has

a9

2>—(¥0

> wi(r,70)- (113)

Since the condition for breakdown of a type S state is Eq. (112a) or

2% A/ w1(7,70) _ I_ a9

2

So + 50_3 oro
this may be combined with Eq. (113) to give an inequality for the critical
radius
% o/,
2> 2_4—(»1(1,;0) > wy
So + .1
or .
2IK(1 + syh% ) o
. soll F 59 > 2%(1 4 sy,
This yields
2.271 > 50 > 1.434. (114)

There is thus a critical cloud radius between these limits, the exact value
of which hinges upon the law followed by the current at which a type s
state becomes impossible. Since Allis’ work shows that there is no type
D state, it would appear that under a condition of increasing anode
voltage, if a single-stream state is set up when sq.,4 < 1.434, this must
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break up into some transient state until the voltage is high enough to
give a cloud radius greater than 2.271.

‘When the current decreases monotonically [i(ro) /i(r)] > 1, the integral
term from Eq. (112b) decreases faster than wi(r,r0) and furthermore
—60/61-0 < wl(‘To,To). Two thlngs may happen: If |—60/370| < wl(To,‘ro),
the condition for the breakdown of the S state Eq. (112a) is altered to
give a larger value of so and the S state may persist beyond s, = 2.271;
whereas if |—88/87¢| > wi(ro,70), as may happen if —o88/dr) becomes
sufficiently negative, the breakdown condition, as in the case of a monoton-
ically increasing current, becomes more severe and the S state breaks
down for cloud radii less than 2.271,

Finally suppose that a small current flows for a certain time 7', after
which it becomes zero. Then

dun(rro) _ —8sg®dsy 8 1 9 /r iy
a0 wiryro) 90 wilr,ro) 2(s0 + $5°) 970 o dr. (115)

For r > T, this expression becomes
dun(r,ro) _ 48y 7'yi(-ro)
979 =+ wi(r,70) (S0 + 857 2w >0, (116)
and, from Eq. (112b),

a [ a0 .
g(a—m) = a positive constant, > T.

It follows that 38/dr, can become as large as one pleases after sufficiently
long times. Thus the instability criterion Eq. (112a) shows that a cloud
of any radius established during the flow of current becomes unstable
after a sufficient length of time. The length of time required for the
instability to appear will be of the order of 1/vi(r).

This review of the work which has been carried out on the symmetric
states of magnetrons has indicated the unsatisfactory status of the analy-
sis. There are essentially no experimental data to confirm or to con-
tradict any of the tentative conclusions reached; and in fact, it is not
clear for those cases of greatest interest in which no anode current
is drawn how experiment would distinguish among the various states of
electron flow. Probe measurements would invalidate the assumption
of azimuthal symmetry.

One or two points may be noted. One is the connection between the
cylindrical and linear problems. The solution of the linear problem
has a very artificial appearance. The appearance of a series of layers
on which neighboring orbits touch, as indicated by Eq. (98), thus giving
an infinite charge density, would probably be modified if an initial dis-
tribution of electron velocities was included. Furthermore the slightest
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curvature of the cathode surface, in the concave sense, will give rise to a
crossing of orbits, while in the convex sense, it will cause the orbits no
longer to touch. If a linear flow of the type indicated by the solution
(98) initially existed, a small curvature applied to the cathode would
render it unstable, since the cloud radius would be less than 2.271r..
Presumably, however, it would be quasi-stable in the sense that a con-
siderable time would elapse before the initial organization was destroyed.
This raises the question whether or not there may not be states with
cloud radius S 2.271 times the cathode radius which are effectively stable,
in the sense that over periods of time which are comparable to the starting
time of the magnetron, they would maintain a potential distribution and a
cloud radius closely comparable to that of the Brillouin steady state.
In this connection it should be noted that in double-stream states, where
they can exist, the potential distribution is always close to 1/2y[s — (1/s)]?
unless very large radial currents are flowing.

6-8. The Bunemann Small-amplitude Theory.—The only serious
investigation of the conditions under which tangential resonance oscil-
lations will build up in a magnetron has been made in an extensive report
by O. Bunemann.! It cannot be claimed that Bunemann’s results are
conclusive or that the assumptions of his treatment are completely sound.
However, the viewpoint taken in the paper is illuminating, and it will
be discussed here rather fully.

Bunemann’s approach is to assume an initial state of electronic motion
that has azimuthal symmetry under conditions of constant d-¢ voltage
and magnetic field. It is then supposed that a rotating r-f wave of very
small amplitude, of frequency wo, and angular velocity o = w¢/n, is
imposed on the anode. The small perturbations of the original steady
state are then worked out, taking into account the equations of
motion, the equation of continuity, and Poisson’s equation. In this
way the impedances of the electron cloud is calculated and the wave
impedances within and without the cloud are matched. The variation
with frequency of the impedance of the charge cloud is studied and is
shown to be such as to lead, under some conditions of voltage, magnetic
field, and frequency, to a state in which oscillations will build up spon-
taneously. The analysis is then extended in a more speculative manner
to determine the rate of buildup of oscillations with various loads.

This formulation of the problem appears to simplify the true state
of affairs, for it divides the process of initiation of oscillations into two
stages: (1) the establishment of a steady azimuthally symmetric state
which is supposed to persist while the anode voltage remains constant,
(2) the breakup of this state under the angle-dependent rotating perturba-

1 0. Bunemann, “A Small Amplitude Theory for Magnetrons,” CVD Report,
Mag. 37, 1944.
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tion. In practice one has a d-¢ voltage that increases steadily during
the process. If the time of rise of the voltage be taken to be 0.04 usec,
which is fairly typical, this becomes, in terms of the unit of time 2m/eB,,
equal to 3.6 X 10?B, (B, in kilogauss). A typical rate of rise in
reduced units gives daq/ar ~ 5 X 10~*(n\/r2B?) (MKS). It is evident
that the rate at which the voltage rises is indeed slow in terms of the
natural units, occupying many Larmor periods. Thus it is probably
satisfactory to consider the problem as a static one.
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F1a. 6-12.—Radius of Brillouin steady-state rqeuq as a function of «, for various anode
radii 7;, when the anode voltage is equal to the threshold voltage. Log Teloud/Teathode i8
plotted against v for various values of 10g Tagode/Tcathode. 'The boundary curve shows the
radius of the stationary layer.

The state chosen by Bunemann as an initial state for the electrons
is the Brillouin steady state in which the radial current is zero and the
electrons move about the cathode on concentric circles. As has been
shown in the previous section, if the cloud radius is less than 2.271, no
stationary double-stream solution with zero radial current and constant
anode voltage is possible. The only single-stream state for vanishing
radial current is the Brillouin one. In Fig. 6-12 the radius of the Brillouin
steady state is shown for various anode to eathode ratios and values of v
when it is assumed that the anode voltage is given by the threshold
voltage. This assumption is a reasonable one, since the cloud radius does
not vary rapidly with anode voltage and the magnetron certainly operates
near the threshold voltage. It may be seen that for most practical cases
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the cloud radius under these conditions is less than 2.271. While the
result that only the Brillouin steady state is possible as a stationary
condition for fixed anode voltage must be accepted, it must also be
recalled that Bloch’s analysis indicates that when the anode voltage is
actually varying, the motion may be more complicated. It cannot then
be said that the establishment of the Brillouin steady state under a slowly
rising voltage has been unequivocally shown.
The conditions in the Brillouin state are described by the equations

§ =0, (117a)
1
Yo=1—+v— P (117b)
1 1\
a = 3y (S - E) ’ (117¢)
2 1
g0 = ;(1 + ;,), (117d)

where the zero subscript refers to unperturbed values. If the perturbed
state be also a type S state, then one may introduce a single-valued
‘““velocity potential,” from which the velocities may be derived [see
Eq. (30N, 31N)]. In the nonrelativistic case the velocity potential may
be introduced directly from Eq. (70),

§= %) . (118a)
s2<¢— 1+v+slz> af'p (118b)

where f is chosen so that df/ds and 9f/d¢ vanish at s = 1. For the
unperturbed state, evidently f = 0. Equation (69) takes the form

o (-] -3((2)

5
+[(1—7) ! %T’p” (119)

Writing
~ 1
ay — Sa, = 2—7 (S — —) + a (120)
and neglecting squares of df/ds and df/ay, one has
a
ya, = (1 -7 — —)%b (121a)

If the perturbations are now such that their dependence on angle is given
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by e, then if f = |fle¥ and @, = [ajle=",

=~ 2 (17~ L)in. 210

It is generally the case, as a study of Fig. 6-12 will show, that
1 — v — (1/5?) passes through zero within the cloud and at that point
the linear term in a8f/dy will not be large compared with the quadratic
ones. Equation (121%), however, gives correctly the term in the volt-
age perturbation that varies as e¢~¥. Physically, the vanishing of
1 — v — (1/s?) corresponds to the presence of a layer of charge that is at
rest in the rotating system. Shells of electrons within this layer have
negative angular velocities; those without it, positive angular velocities.
Substituting a, + a; in Poisson’s equation

14 dla n?
L2 (s %) - Tl = led (122

where p; = |pije~™¥ is the perturbation of the charge density. Finally,
one has the equation of continuity

S50+l )+ 550 +2)

1

+91]8[1 —v—s—z——lfl]] =0, (123a)

or, correct to first-order terms,
2 3 1 oAl o 1Y),.
763[(l+§4>s§? s\L =7~ g)nlel
2n? 1
- = (1 + F) {fl =0. (123b)

Eliminating |a,| and |e1] between Eqs. (121b), (122), and (123b), one finds
for |f] the second-order equation

a
2la) =+ mun, (124)
where t is given by s = ¢ and thus,
d_sd
dt  nds

and

(125q)

-
i
|
[X]
N
(=
+
2l
S
=+
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AN
-
|
2
|
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\—/»

B=—1—7—~)- (125b)
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The value of ¢ at the anode for practical magnetrons is very nearly con-
stant. The form taken by Eq. (124) for large n may be found as before
by writing s = e/* = 1 4+ (Ao/r)for t ~2xf. Itis

d /9 dl.ﬂ —_ — 2
S —en Sl = - ey, (126)

U =2rn (; — %)

Equation (124) forms the basis of Bunemann’s analysis. Since it is a
linear differential equation of the second order, it is impossible for
{f] and d|f|/dt to vanish at the same point, without |f| vanishing identi-
cally. Equation (124), therefore, indicates that the perturbations of
voltage and of radial field cannot vanish simultaneously; in particular,
they cannot both vanish at the cathode. Thus, if the potential vanishes
at the cathode, neither the radial field nor the radial velocity can vanish
there. Bunemann endeavors to avoid the difficulty caused by this
conclusion, which appears to be in conflict with the usual assumption of
space-charge limitation and vanishing initial velocity, by asserting that
these conditions properly apply to the total radial field and velocity, but
not to any one Fourier component.

The nature of the difficulty may be brought out by considering more
closely the behavior of f close to the cathode. Suppose that the case
of radial symmetry be examined; the azimuthal variation does not affect
the conclusions. Then if there is an outgoing current i,

where

af .
s 55 = 1, (127)
19 ( av)_
sas\"as) "~ @
with
_ 1\? of \?
2vv = (s — E) + (‘3—s . (128)

Combining these into an equation for 8f/ds, one has

BLRAIC @) o

Near to the cathode (s = 1), f behaves like 2(9vi/2)%(s — 1)%. The
thickness of the sheath close to the cathode in which f follows this law
may be estimated by equating s — (1/s) and a8f/ds. This gives,
Swmtn = 1 + Pgyi. The charge contained in the sheath varies as i,
while the charge density varies as (s — 1)-%. It is also evident that
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beyond the sheath one will have
of i 1

3 2ra | o N
as|®as\® s

If the Brillouin steady state be imagined as derived from such a solu-
tion by allowing i to tend to zero, it is clear that conditions at the cathode
will be somewhat peculiar, since for any finite i however small, f will
behave like (s — 1)” through a sheath {%~f in thickness. Thus, in Bune-
mann’s analysis, if the perturbation causes currents to flow at any part of
the cathode, f will be of the order (s — 1)% and the term (9f/ds)? in Eq.
{(130) will be of a lower order than f over a distance of the order of i from
the cathode. Bunemann ignores this sheath and puts f = 0 essentially
at a distance i from the cathode, where, in fact, f is about

(130)

3 (9vi\* % ., 3 .
5<2> (s—1 ~m(971)-
It would appear that this is justifiable.!
Accepting the validity of these arguments one may consider Eq. (124).
This has certain features which are independent of n. It has always
two singular points, which may be labeled s, and s_, given by

s?

A(s)=—2<1+$>+n2<1—7— 1)2=0. (131a)

This may be written as

may) _ny _n _L.\/l 1) _
(eB)' 2 ‘2(1 s;)i 2<1+s; =

=nby + 1 — 2b; + 2b%, (131d)
where b = §(1 — 1/s?) and runs from 1 to (1 — s7?). The radius

at which the unperturbed velocity vanishes in the rotating system is
given by

Mg

E = nbo = xd. (1316)

leoyo— 5 =0 y=2b, or
Sp
Figures 6:13a, b, and ¢ show mw,/eB or =8 as a function of by, b_, and b,
for three values of n, (n = 4), (n = 8), and (n = =).
The variable 78 must be thought of as running from — e« to — «,
since one is interested in perturbing waves running in either direction.
Considering a fixed 3, or a fixed frequency and fixed magnetic field,

1 See in this connection, W. E. Lamb and M. Phillips, Jour. App. Phys., 18, 230
(1947).
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the cloud radius will increase as the applied voltage increases. Thus, beoua
will increase steadily from zero, and the cloud will contain all values
of b between 0 and baoua. From Figs. 6:13a, b and ¢, it may be seen

. Reactive
T ag =
04 s+ A Positive conductance
( [ Negative conductance
ER Ambiguous
03 N\
i \
b \ b, ,
02 ‘ 02 ATKh,
) - b //
¢ b
0.1 2 0.1 2
0 A
0 0 w 10 -10 0 +1.0
mw .
(a) r 5 = p Bo =4Y

-1 0 +1 +2 +3 +4
mw,

@ T8=—gp

Fia. 6-13.—(a) Radii of the two singular streams and the stationary stream as a func-
tion of mwo/eB for n = 4. The function b = }(1 — r2uthode/72) is plotted. The broken
line represents a typical value for the anode radius, and the dotted line indicates the cloud
radius when the anode voltage is equal to the threshold voltage. (b) Same for n = 8.
(¢) Location of the singular streams and stationary-stream as a function of mws/eB for
n = ®, The variable 2xr(y/MNo), where Ao is the wavelength of the field in the interaction
space, is plotted. The cloud radius coincides with that of the stationary layer when
the anode voltage is equal to the threshold voltage for each case.

that when #3 < —1, none of s;, Sp, or s_ is within the cloud; for
—1 < xd <0, s;isincluded for a sufficiently high voltage;for0 < x8§ < 1,
8, is first included, then s.; for 1 < x5, s_, s¢, and s, are successively
included as Vincreases. Notall cases may be realized, since buca < Dasodes
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The values of b corresponding to the threshold voltage as the anode
have also been plotted; for n = « the stationary layer is exactly at
the cloud boundary when the threshold voltage is on the anode. Clearly
the presence or absence of the singularities depends upon voltage,
magnetic field, and frequency. The singularities have some physical
significance, for n[l — v — (1/s%)] is the frequency with which the
electrons encounter the variations in potential while, as was shown
previously, +/2[1 4+ (1/s%)] is the local frequency of oscillation of the
space charge in a cylindrically symmetric field. The two singularities
correspond to resonance between these frequencies. The two roots
appear from the two senses of rotation of the electrons; they are separated
by the root for the stationary layer as they should be.

It is now necessary to derive an expression for the wave admittance
H./E, at the surface of the space-charge cloud. Some care is necessary,
since a quasi-static approximation is being used. One has

T dE, _ _r _ 3k,
Ht— _E(EOW'{'_Jr)_ nj(Jr wep - aw

3 7.
= —weor —wTﬂoH, - 57-‘ (AO — (;.)TAd,)jI - 7;7’—‘7_
Ho~ower 22— L7, (132)

ar nj

neglecting w?euor? compared with 1 and putting V), = 4, — wrd,.
Between the concentric circles that bound the perturbed layer of the
space charge there is an r-f surface current of magnitude + poAr(Yo + w),
where A is the amplitude of the perturbation of the surface. A may be
found from the equation!

of
dA 7 ar
== = — . 133
8y Yo o njo (133)
Thus,
H, = H.(inside) + H(surface current)
_ 8V1 _ por 6f poT af(¢o + w)
= e S T miar T mjor\ g
_ aV1 po?1 w af
= + fr % 2 (134a)
and
E, = ’%’ Vs (134b)

1An unreduced f is used at this point.
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The cloud admittance is thus given by
_Hi_ 1 (Vi wed
Yo=73.= njvl(“"“" ar T ong ‘Toa*{)

=({;0€_(]7_‘> 1 ( 6V1+ po’ 6f>
j nV, ar | emnjoor

_ 6V1 por af
= —(jYo) v ( + woniod 07_) (135a)
where Y, = weor
In reduced variables
Yoo Lldoa), o d]
7Y, ‘ydx[ dt + njdo At =P, (135b)
Since, according to Eq. (121a) ya, = ~{1 — v — (1/s®)njf
AN
P=%tomy (136)

whereg =1 ~ v — (1/s%)
Substituting for Af’/f in Eq. (124), one obtains the equation for P

7\ 2
g
P 4=
aP _ 2 ( 9) (137)
v ~1+4+ P + s+ cE-1
where
ng
a = —.
Ve
or, for Q = 1/P, the normalized impedance
g Y
d_Q.__1+Qzl__l __(1_+_Zi). (138q)
a? at—1

For n — =, this becomes
dQ . (1 + ) (138b)
Q - t12

where, as before, £ = 2r(c — §/2).

The Eq. (138a) has to be integrated up to the surface of the charge
cloud with the condition that Q = O at £ = 0. It may be well to empha-
size that these equations do not describe the variation of admittance
or impedance as one moves through a cloud of fixed radius but rather
represent the variation of these quantities at the surface of the cloud
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as the radius of the latter is varied (say by increasing the voltage).
Functionally P, Q = P, Q(s., n, v). The singularities of Eqgs. (137)
and (138a) are the same as those of Eq. (124). The zero value of a does
not lead to a singularity; for from Eq. (138a), if s¢ or t, marks the sta-
tionary layer,

Q= (s~ sp)? or (I— t)?
near so or ;. This is the result as given by Bunemann and is not strictly
correct, since in the neighborhood of sy, the definition of A has to be
modified in view of the vanishing of . Examination shows that one has
Q =ls — s

Since s, is a function of w (through $), then, if @ = wy + (@ — we) where
so("’o) = s:

Q ~ I8 — so(w)| = |s ~ son) = 3 (0 — wp)

039
awo

= |w — wol . (139)

Bunemann'’s discussion of stability depends upon the following con-
giderations concerning admittance functions. Consider an admittance
G + jB (or an impedance R 4+ jX) that is a function of the complex
frequency w + jo. Then for networks and for any system whereby
the admittance is calculated as a function of frequency by analytical
means, G + jB is an analytic function of w + jo. Using the Cauchy-
Riemann conditions,

3G _ 4B
T
3¢ 8B
6~ dw

For.a circuit that is reactive for real frequencies (¢ = 0), one has when
¢ = b¢

9B
36 = — 2= b, (140)

Thus if ¢ is negative, corresponding to a slightly increasing amplitude
of oscillation, G is positive for normal networks, since 4B/dw > 0,
and the network behaves like a load. But if dB/9«w were negative, G
would be negative and any transient that started to build up would be
aided by the circuit which could act as a generator. Thus a network,
purely reactive for real frequencies, will be unstable if dB/dw < 0;
similarly, when X /dw < 0.

The behavior of Q (or P) must then be studied as a function of fre-
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quency. Consider f in the neighborhood of one of the singularities.
Since the zero of A is simple, if it occurs at ¢ = £, corresponding to
s = s;, then f has the form C + log (ty — t) or C' + log (s, — §).
This may be inserted into the equation defining P which, noting that
A(sy) = 0, becomes

2 2 4
Fs = ¢\/s;+1[1+C’+log(si—s>]+n(s;+1)

1
C" +log (5. — 8)
The first logarithmic term dominates the second for n > 1. The plus
sign refers to the left-hand (upper) hyperbola in Figs. (6-13); the minus
sign to the right-hand (lower) one. As before, s, defined by A(sy) = 0,
is a function of w. Thus

C' 4+ log (sy — §) = C' 4 log [sy(w) — s]
= (" + log [S:I:(“’d:) + (0 — wy) 95 ] =C" +log (0 —wy), (142)

—=—s
ow
where

(141)

si(wy) = s.

Thus, the dominant part of — Y., considered as a function of
frequency for fixed cloud radius s in the neighborhood of a singular
frequency wy, is

j wol” 2 2 »
120x nc [ + \/s“ +1 (1 * C" + log (w — “’:!:)):I' (143)

The logarithmic character of the singularity indicates that f acquires
an imaginary part in passing a singular point and P (or Q) will acquire
a real part. It is evident from this fact that in case the admittance
gains a negative real part, the whole analysis has been extended into a
region in which it is invalid. For if the space-charge cloud is to act as a
generator [Re(P) < 0] in a steady state, there must be a steady flow of
energy into the resonant system. This, in turn, implies that electrons
must flow to the anode, and this is incompatible with the earlier hypoth-
esis of the small signal theory. Physically, then, one cannot safely
carry the analysis beyond the singularities.

If in some region f is complex, say f = fi + jfe, then the imaginary
part of A(d log f/ds) is A(fifs — fof )/t + f3, and the numerator is
independent of ¢, since fi and f; individually satisfy Eq. (124). Sub-
stituting in Eq. (141) defining P, it is seen that the conductance can
change sign only at ¢, or t_, where f, and f, are discontinuous. Starting
from a cloud radius of unity, the admittance will be purely susceptive
and ¢’ real. As the first singularity is passed, log (s — s) acquires an
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imaginary part +jr whose sign depends upon the path by which the
singularity is avoided. One is interested in a case where wo = wo + jo
and ¢ is slightly negative. Using the relation

mwo _nf, 1 1 1\
B =30 g5 a)
medwo _2n V2.
eBos s T 1\’

sb 1+p

and for n > 0, dwe/ds > 0, so that if 6wy = jo where o is negative, then
5Im(s) < 0 and the path of integration goes below the axis. This
means that the logarithm increases by —jr. The term

one has

(144)

[C" + log (50 — )],

therefore, acquires a positive imaginary part. Examining Eq. (143)
it is seen that the sign of the real part of Y is the same as that in fronu of
the radical for wo, < 0 and opposite to it for wy > 0. The b, xé plane is
now divided into reactive regions and regions of positive and negative
conductance as shown in Fig. 6-13. The behavior in the region beyond
the second singularity is ambiguous without special examination.

From Eq. (143) for the admittance in a susceptive region close to a
singularity, i.e., immediately to the right of the singular curves in Fig.
6-11, it is found that the susceptance decreases with frequency to the
right of the s, curve and increases to the right of the s_ curve. Since
in the neighborhood of the s, curve the susceptance follows |w — w
and therefore its variation with frequency changes sign, it is reasonable
to conjecture that throughout the susceptive region between the s, and
s, the susceptance decreases with frequency. This has been verified
by Bunemann by numerical integration of Eq. (124) in several cases of
different n values, and the behavior for the several n values turned
out to be substantially alike. It thus appears that these regions will be
unstable according to the criteria set up. Bunemann now pursues the
analysis to obtain a match between the reactive part of the admittance
and that of the load, leaving the real parts to adjust themselves. For
sharply resonant circuits matching can be effected at a given we and B
only for a narrow range of cloud radii. Thus, if s, be also fixed, a nearly
unique voltage is defined at which build-up can occur. This “instability”
voltage! will differ from the threshold voltage; one may expeet the start-

1This voltage has been calculated by Copley and Willshaw, G. E. C. Report 8490,
August 1944, for several N and s.. The application given there to oscillating states
is questionable.

—
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ing voltage of the tube to exceed either. The inevitable presence of leak-
age at low levels makes experimental check difficult.

6:9. Analysis by the Method of Self-consistent Fields.—In the first
sections of this chapter the equations of the magnetron are set up and
discussed. The analytical difficulties that arise in their solution have
been pointed out, and it has been found that many of these difficulties
are carried over into the symmetrical case. The case in which tangential
fields are present has been the subject of considerable numerical investiga-
tion. This has not been carried so far as one might wish, but the results
have given considerable insight into the operating conditions. The
methods used are, in any event, of great importance.

The problers may be stated once again to emphasize the aspects
of interest. One has a static field, satisfying certain boundary conditions
at the anode and cathode. In this field the electrons move, satisfying
the equations of motion and the equation of continuity. As a result of
their motion, a charge density exists and the static field must be consistent
with this density through Poisson’s equation. Thus, in the terminology
of atomic physics, the problem is a self-consistent field problem. Thatis,
the electron motions are determined by the fields 