SOFTWARE ARTICLE

Title:
RANDNA: a random DNA seqences generator
Authors:

Piva Francesco (corresponding author)
Istituto di Biologia e Genetica

Università Politecnica delle Marche

Via Brecce Bianche, Monte D'Ago

60131 Ancona

ITALY

Tel +39 071 220 4641

Fax +39 071 220 4609

Email: f.piva@univpm.it
Giovanni Principato

Istituto di Biologia e Genetica

Università Politecnica delle Marche

Via Brecce Bianche, Monte D'Ago

60131 Ancona

ITALY

Tel +39 071 220 4641

Fax +39 071 220 4609

Email: principato@univpm.it
ABSTRACT

Background

Monte Carlo simulations are useful to verify the significance of data. Genomic regularities, like the nucleotide correlations or the not uniform distribution of the motifs throughout genomic or mature mRNA sequences, exist and their significance can be check by means Monte Carlo test. The test needs of good quality random sequences to work, moreover they should have the same nucleotide distridution of the sequences from which the regularities are been found. Random DNA sequences are also useful to estimate the background score of an alignment, that is a threshold below which the resulting score is merely due to chance.
Results
We have developed RANDNA, a free software which allows to produce random DNA or RNA sequences setting both their length and the percentage of nucleotide composition. Sequences having the same nucleotide distribution of exonic, intronic or intergenic sequences can be generated. Its graphic interface allows to easily set the parameters that characterize the sequences being produced and saved in a text format file. The pseudo random number generator function of Borland Delphi 6 is used, since it guarantees a good randomness, a long cycle length and a high speed.
Conclusion

We have checked the quality of sequences generated by the software, by means of well-known tests, both by themselves and versus genuine random sequences. We show the good quality of the generated sequences. The software, complete with examples and documentation, is freely available to users from: http://www.introni.it/en/software
BACKGROUND
Efficiency (or information density) in a language is the ability to transfer or memorize information using the smallest possible number of symbols, whereas redundancy is the loss of efficiency caused by the presence of correlations and different frequencies of symbols or words [1]. According to the information theory, the more erratic the succession of symbols of a language, the greater its efficiency but the language is less robust in terms of the ability to preserve/transfer information in the presence of noise. Natural languages tend to reach a balance between efficiency and robustness; redundancy is therefore a characteristic of natural languages.

The application of information theory to genomic sequences can reveal regularities, that is, the presence of correlations among nucleotides and different frequencies of nucleotides or motifs. To estabilish the presence of such regularities it is important to infer their function, understand the language that specifies them and set up experimental investigations.

In particular the regularities are common in the protein coding regions of eukaryotic genes because they are highly constrained by the presence of at least two languages, one specifying the amino acid by defining the codon and the second regulating the splicing process by defining some codons among their synonyms; this contributes to the formation of enhancer or silencer regulatory elements which allow exons to be recognized as constitutive or alternative [2]. The two languages are able to coexist because the genetic code is degenerate and the splicing language can use bases that are not constrained by the first language.

Coding sequences seem to be overloaded with functions whereas the opposite is true of introns, as they contain few splicing signals while the rest have a weak regulatory role. Moreover, since in higher eukaryotes introns are numerous and often quite large, they are probably less crowded with information than exons, thus obviating the need for overlapping languages in the same nucleotides. For these reasons, the succession of nucleotides is more erratic in introns than in exons. Thus, if intronic sequences were totally erratic, they would indicate the absence of a language and therefore of a function.

The issue is that to exclude the presence of redundancy in sequences, a test should have to check infinite possibilities of linkages among nucleotides and words, an extremely time-consuming procedure. Nevertheless even simple tests can reveal the presence of correlations [3] in sequences but their significance has to be shown.

The Monte Carlo simulation can be used for this aim but it works well if true random sequences are used.

To generate good random sequences is also useful when the score of an alignment has to be evaluated. Indeed aligning random sequences it is possible to estimate a threshold below which the score of the alingment is due to chance.

Only natural physical phenomena like radioactive decay or the arrival of cosmic rays in a detector, represent perfect random number generators.

Artificial random number generators are produced by an algorithm that implements a recursive formula initialized by a random sequence called ‘seed’. Since this function is deterministic, these generators are called ‘pseudo random number generators’ and they do not have the maximum entropy and are periodic. A good algorithm has to have a large amount of seeds from which to start, a good entropy and a very high rollover time, that is, a large period.
IMPLEMENTATION
RANDNA is written in Borland Delphi v.6 and runs on ix86 compatible processors under Microsoft Windows as well as on Apple Macintosh, Linux and Unix-based platforms using Windows emulator software with one of the required Microsoft Windows versions.

The software, complete with examples and documentation, is freely available to users from: http://www.introni.it/en/software
The user can choose to obtain a uniform distribution of nucleotides by setting all the frequencies at 25% or have a different distribution decreasing from the equiprobability. Maximum length of the sequence being produced can be chosen up to two thousand millions of nucleotides, the maximum number of sequences generated is up to 255. Setting the flag ‘U instead of T’ the software generates RNA instead of DNA sequences.
Its graphic interface allows to easily set the parameters and all flags are in the main panel. After processing, an output text format file is produced.
RESULTS AND DISCUSSION
We have developed a free software that generates pseudo random DNA sequences using pseudo random generator subroutine of Borland Delphi 6. Is not clear if such an algorithm uses an Intel processor internal function or the time and date of the computer clock to generate the seed, the former method should secure a good randomness but the quality depends on the specific processor [4], the latter could secure nearly the same quality. In Delphi 6 the seed variable is 32 bit long so there are 2 ^32 different seeds and the period of the generator is 2^32 numbers. In the program code we have called ‘Randomize’ function immediatly at the beginning of the instructions so the time that user spends to set the parameters is a further source of randomness.

We have checked the quality of pseudo random number generator of Delphi 6, by means of well-known tests, both by itself and versus a sequence generated by radioactive decas processes, so has to have a genuine random sequence [http://www.fourmilab.ch/hotbits/]. We have used the following test packages : ENT [http://www.fourmilab.ch/random/], DIEHARD [http://www.stat.fsu.edu/pub/diehard/] and RNGTEST [http://www.gapoptic.unige.ch/Prototypes/QRNG/].

Since the output of the tests is many pages long, we show the output of only one test. The outputs of the other tests are available at the web page www.introni.it/en/software/ with the software and the help files.

The ENT test evaluates a random sequence by means five parameters:

1) Entropy: it is the information density of the sequence, expressed as a number of bits per character. In general higher this value better is the randomness. Sequences we used for the tests were ASCII format, that is, 8 bits per character so the entropy should be as near as possible to 8.
2) The chi-square test gives an absolute number and a percentage which indicates how frequently a truly random sequence would exceed the value calculated. We interpret the percentage as the degree to which the sequence tested is suspected of being non-random.

3) The Arithmetic Mean is the result of summing the all the bytes in the sequence and dividing by the sequence. If the data are close to random, this should be about 127.5
4) Monte Carlo Value for Pi: each successive sequence of six bytes is used as 24 bit X and Y co-ordinates within a square. If the distance of the randomly-generated point is less than the radius of a circle inscribed within the square, the six-byte sequence is considered a "hit". The percentage of hits can be used to calculate the value of Pi. For very large streams the value will approach the correct value of Pi if the sequence is close to random.

5) Serial Correlation Coefficient: this quantity measures the extent to which each byte in the file depends upon the previous byte. For random sequences this value will be close to zero.
We show the results for Borland Delphi 6 pseudo random number generator and Real random number generator (radioactive decay):
Borland Delphi 6 algorithm:
 Entropy = 7.964000 bits per character.

 Optimum compression would reduce the size

 of this 1070577 character file by 0 percent.

 Chi square distribution for 1070577 samples is 56062.67, and randomly

 would exceed this value 0.01 percent of the times.

 Arithmetic mean value of data bytes is 126.6327 (127.5 = random).

 Monte Carlo value for Pi is 3.156706589 (error 0.48 percent).

 Serial correlation coefficient is 0.029260 (totally uncorrelated = 0.0).
Real random number:
 Entropy = 7.963680 bits per character.

 Optimum compression would reduce the size

 of this 1061435 character file by 0 percent.

 Chi square distribution for 1061435 samples is 56680.83, and randomly

 would exceed this value 0.01 percent of the times.

 Arithmetic mean value of data bytes is 126.4916 (127.5 = random).

 Monte Carlo value for Pi is 3.162895339 (error 0.68 percent).

 Serial correlation coefficient is 0.029643 (totally uncorrelated = 0.0).
Comparing the results we can see that software RANDNA has very good performance because results are very similar (and some parameters are even better) to that of the genuine random number generator. So the generated sequences should lack of regularities and they are the ideal wild sequences.
CONCLUSIONS

We developed a simple and effective tool to generate random nucleotide sequences. RANDNA can be used to test the significance of regularities observed in nucleotide sequences indeed one can try to seek the same regularities in random sequences and use the obtained data to perform a significance test.

It can also be used to value the score of an alignment aligning random sequences among them and using this last score as a reference.

The software is flexible as nucleotide distribution can be set, both DNA and RNA sequences can be generated and the good randomness was shown by means well known tests.
Software updates and new releases will be available from the web page http://www.introni.it/en/software/
AVAILABILITY AND REQUIREMENTS

Project name: RANDNA a random DNA seqences generator
Project home page: www.introni.it/en/software/
Operating system: Microsoft Windows
Programming language: Borland Delphi 6
Other requirements: none
License: freeware
Any restrictions to use by non-academics: none
LISTS OF ABBREVIATIONS

Pi: π
AUTHORS’ CONTRIBUTIONS

FP conceived the study, developed and tested the software.

FP and GP drafted the manuscript.

All authors have read and approved the manuscript.

ACKNOWLEDGEMENTS

We would like to thank Matteo Giulietti for the help in collecting the genuine random sequences for the tests.
REFERENCES

1. Shannon CE: A Mathematical Theory of Communication. The Bell System Technical Journal 1948, 27: 379–423, 623–656.
2. Pagani F, Raponi M, Baralle FE: Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution. Proc Natl Acad Sci U S A 2005, 102: 6368-6372.

3. Piva F, Principato G: CORRELATION FINDER. In Silico Biol 2005, 5: 0042.
4. Huang F, Shen H: Intel random number generator-based true random number generator. Di Yi Jun Yi Da Xue Xue Bao 2004, 24: 1091-1095.
